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To m a s z  I m i e l i n s k i  a n d  H e i k k i  M a n n i l a

DATABASE MINING IS NOT SIMPLY ANOTHER

buzzword for statistical data analysis or
inductive learning. Database mining sets
new challenges to database technology:
new concepts and methods are needed
for query languages, basic operations,
and query processing strategies. The

most important new component is the ad hoc nature of knowledge and data dis-
covery (KDD) queries and the need for efficient query compilation into a multi-
tude of existing and new data analysis methods. Hence, database mining builds
upon the existing body of work in statistics and machine learning but provides
completely new functionalities.

The current generation of database systems are designed mainly to support busi-
ness applications. The success of Structured Query Language (SQL) has capitalized

on a small number of primitives sufficient to support a vast majority of such appli-
cations. Unfortunately, these primitives are not sufficient to capture the emerg-

ing family of new applications dealing with knowledge discovery.
Most current KDD systems offer isolated discovery features using tree

inducers, neural nets, and rule discovery algorithms. Such systems cannot be
embedded into a large application and typically offer just one knowledge dis-

The concept of data
mining as a querying
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covery feature. The same is true for most online analyt-
ical processing (OLAP) tools. We call such systems first-
generation database mining systems. The current
situation is very similar to the situation in database man-
agement systems in the early 1960s, when each applica-
tion had to be built from scratch, without the benefit of
dedicated database primitives provided later by SQL
and relational database APIs (Application Program-
ming Interface). In fact, today’s techniques of data min-
ing would more appropriately be described as “file
mining” since they assume a loose coupling between a
data-mining engine and a database. In most cases, this
interface has a form of two simple commands: “read
from” and “write to”, just as Cobol programs interacted
with large data files 30 years ago. Additionally, the KDD
field currently suffers from lack of identi-
ty: there is no consensus on whether
KDD is an area of its own.

Some claim knowledge discovery is
simply machine learning with large data
sets, and that the database component
of the KDD is essentially maximizing
performance of mining operations run-
ning in the top of large persistent data
sets and involving expensive I/O. It is, of
course, important work to close the gap
between the inductive learning tools
and the database systems currently avail-
able. However, although improving per-
formance is an important issue, it is
probably not sufficient to trigger a qual-
itative change in system capabilities.

Moreover, many database management system
(DBMS) performance enhancements important for
database mining are also desirable in general. Such
features include parallel query execution, in-memory
evaluation as well as optimized support for sampling
and aggregate query operations such as “Count,”
“Average,” and “Variance.” These features are of gen-
eral interest and their importance to database mining
can be viewed only as a side effect of basic research in
DBMS. Moreover, incremental improvements of
existing DBMSs to better suit KDD applications will
most likely be insufficient, since the current DBMSs

were primarily targeted at the different classes of
applications.

A historical analogy is perhaps in order; one may
argue that performance improvement of I/O opera-
tions alone would have never triggered the DBMS
research field nearly 30 years ago. Query languages,
query optimization, and transaction processing were
the driving ideas behind the tremendous growth of
database field in the last three decades. To be more
specific, it was the ad hoc nature of querying that cre-
ated a challenge to build general-purpose query opti-
mizers. If queries were predefined and their number
was limited it would be sufficient to develop highly
tuned, stand-alone, library routines. We believe data-
base mining can follow a similar path of development.

New Research Frontier

The following are two research scenar-
ios: a short-term vision—that is strictly
performance driven, and well under
way—and another, long term, that is
only beginning now and possibly
defines a new frontier for database
research.

Research Program—Short Term

The short-term research program calls
for efficient algorithms implementing
machine learning tools on the top of
large databases and utilizing the existing
DBMS support.

The implementation of classification algorithms
(say, C4.5) or neural networks on top of a large data-
base requires tighter coupling with the database system
and intelligent use of indexing techniques [4, 6]. For
example, training a classifier on a large training set
stored in a database may require multiple passes
through the data using different orderings between
attributes. This can be implemented by utilizing DBMS
support for aggregate operations, indexes and data-
base sorting (order by). Clustering may require effi-
cient implementations of nearest neighbor algorithms
on the top of large databases. Finally, generation of
association rules can be performed in many different
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ways, depending on the amount of main memory avail-
able. There have been a growing number of papers on
this subject at recent VLDB and SIGMOD conferences.
Some of these techniques are finding their way into
products such as IBM’s Intelligent Miner.

Research Program—Long Term

Database mining should learn from the general expe-
rience of DBMS field and follow one of the key DBMS
paradigms: building optimizing compilers for ad hoc
queries and embedding queries in application pro-
gramming interfaces. Thus, the focus should be on
increasing programmer productivity for KDD applica-

tion development. In fact, there is a growing need for
Knowledge and Data Discovery Management Systems
(KDDMS), or second-generation database mining sys-
tems, to manage KDD applications just as DBMSs suc-
cessfully manage business applications.

Queries in KDDMS, however, have to be much more
general than SQL; similarly, the queried objects have to
be far more complex than records (tuples) in relation-
al database. To achieve this, we define KDD objects,
KDD queries, and bring back the concept of closure of
a query language as a basic design paradigm. By a KDD
object we mean a rule, a classifier, or a clustering. 

Rules, which are defined more precisely in the next
section, are essentially probabilistic formulas or multi-
dimensional correlations (see Figure 1). Classifiers are
defined using, for example, classification trees, neural
networks or multidimensional regression. Clusterings
refer to collections of sets of objects, in which each set
consists of objects grouped together by proximity with
respect to a predefined distance metric. 

By a KDD query we mean a predicate which returns
a set of objects that can either be KDD objects or data-
base objects such as records or tuples. The KDD
objects typically will not exist a priori, thus querying
the KDD objects requires (rule, classification, cluster)
generation at run time. KDD objects may also be pre-
generated and stored in a “inductive” database, such as

metadata. For example, a rule base can store pregen-
erated associations [10], or rules [8]. In such cases
querying can be reduced to retrieval. In general, a
KDDMS should be able to persistently store and man-
age the KDD objects as well as provide the ability to
query them. Thus, querying has two major roles: gen-
eration of new KDD objects and retrieval of the ones
which were generated before.

In relational databases, the result of a query is a rela-
tion that can be queried further. In fact, a relational
query “does not care” if its argument is the original
database or if it is a result of another query. This is typ-
ically referred to as a closure principle, and it is one of
the most important design principles (although SQL
does not fully follow it).

We also would like a KDD query language to satisfy
such a closure principle. Thus, a result of a KDD query
may be an argument of another compatible type  of
KDD query. We would like relational queries to form a
proper subset of KDD queries. In principle, then, a
KDD query can be nested within a regular relational
query. This is illustrated in Figure 2. Some examples of
KDD queries:

• Generate a classifier (say, by a decision tree) trained
on a user-defined training set (specified through a
database query) with user-defined attributes and
user-specified classification categories. Then find all
records in the database wrongly classified using that
classifier and use that set as a training data for
another classifier.

• Generate the strongest rule (according to some pre-
defined criterion) with user-specified attributes
occurring in the body and in the consequent. Find
tuples that violate this rule and generate rules satis-
fied by such set of tuples.

• Generate all rules with consequent attribute values
computed by an SQL query. This illustrates that
KDD queries may not be completely known at a
compile time.

• Find tuples that belong to the largest cluster in a
clustering constructed according to user-specified
distance metrics.

KDD queries may cross the border between tuples
(database objects) and KDD objects several times pos-
sibly using multiple layers of nesting. KDD queries can
also be embedded in a host programming environ-
ment to provide application programming interfaces
for knowledge and data discovery applications just as
SQL queries can be embedded in host languages such

Figure 1. Examples of rules



as C or Cobol. 
The proposed research program is as follows: First a

KDD query language has to be formally defined
(prompting questions about desired expressive power,
and so forth), then query optimization tools would be
developed to compile queries into reasonably efficient
execution plans. These execution plans will include
existing inductive learning and statistical data analysis
algorithms and may include new inductive tools as
well. Note how this plan essentially mirrors the devel-
opment of query languages and query optimization in
relational databases.

Thus, in our view, database mining is not simply
another buzzword for statistical data analysis or induc-
tive learning on large data sets. The key new compo-
nent is the ad hoc nature of KDD queries and the need
for efficient query compilation into a multitude of
existing and new data analysis methods. Hence, data-
base mining builds upon the existing body of work in
statistics and machine learning, but provides com-
pletely new functionalities.

KDD query optimization will be more challenging
than relational query optimization due to the higher

expressive power of KDD queries. (Some general
approaches such as pushing selections down the query
trees can be used here as well. In this case, some selec-
tions may be pushed prior to the rule or classification
tree generation.)

Another difficulty is that the border between query-
ing and discovery is fuzzy; one might even say that there
is no such a thing as real “discovery.” Discovery is just a
matter of the expressive power of a query language.1

Thus, discovery is a very fuzzy term and is often misused
to describe the results of standard SQL querying. 

In the following section, we present the emerging
body of work in which rules are considered primarily
as KDD objects. This work presents a first step in real-
izing the more ambitious program just described.

Rule Querying and Rule Manipulation

As a running example, consider a database about occur-
rences of certain diseases. Suppose we have three classes
of objects in the database: Patients (with attributes or
operations Age, Sex, City, Diagnosis, Height, Weight,
ClaimAmt (Claim Amount) and so forth, a computed
attribute BMI (body mass index), and City (with attrib-
utes State, Population, etc.)) 

An example of a propositional rule in this database
would be

X.Diagnosis = “heart disease” And X.Sex = “male” 
==> X.Age > 50 [1200,0.70]

indicating there are at least 1,200 heart attack cases
and that at least 70% of these occurred to persons over

50. Thus, propositional rules involve
one (implicit) table or predicate and
do not involve variables. Proposition-
al rules can, in principle, use arbitrary
methods instead of just materialized
attributes. 

Predicate rules are Horn clauses
(implications) with possibly different
predicates occurring in the body and in
the consequent of a rule. Additionally,
these rules involve statistical quantifiers
that capture support and confidence of
a rule. An example of such a rule could
state that 80% of employees who are
married to their managers are working
on federally supported projects. Such a
rule will involve multiple predicates

such as "Married" and "Project."
Any database implicitly defines the collection of all

propositional or predicate rules in it. While this collec-
tion is too large to enumerate, we use it in a conceptu-
al way. 

Generating rules that satisfy predefined predicates
is viewed as querying. As an example, the user may
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Figure 2. Data mining as rule querying

1A recent article in the Wall Street Journal referred to standard SQL querying
of a large warehouse of financial information as database mining and the
query about employees who earn more than their managers as “discovering”
important class of employees. 



state that he or she wants to see all rules about a
patient with heart disease such that the consequent of
the rule says something about the age of the patient,
there are at least 1,000 cases which the rule body
applies, and the confidence of the rule is at least 65%.
In the M-SQL language of Imielinski and Virmani [10]
this rule query would be represented as follows:

Select

From Mine(T): R

Where R.Consequent = {(Age =*)

R.Support > 1000

R.Confidence > 0.65

R renames Mine(T) and Mine(T) is an operator that
takes a class T and generates all propositional rules
about T. Obviously, Mine(T) is actually never enumer-
ated.

Attributes of R such as Consequent, Body (not pre-
sent here), Support, and Confidence refer to the Con-
sequent and Body of the rule, and its support and
confidence numbers. The condition (Age = *) indi-
cates that any value of the attribute Age is allowed to
occur in the consequent. The rule about patients with
heart disease would belong to the answer of this query. 

Thus, rule discovery is viewed as yet another, per-
haps more expressive, type of querying. Rules that con-
stitute answers to rule queries are no more (or less)
“discovered” than tuples in the answers to SQL
queries. 

But rules are not necessarily the final product of the
KDD applications. Thus, a proper API which embeds a
rule query language in a more expressive, general pur-
pose, host programming environment is necessary.
This requires the ability to manipulate and iterate over
collections of rules by making them first-class pro-
gramming objects, similar to those described in [10].
A true KDDMS would have to be equipped with such
an API.

As an example, consider an application that predicts
values of unknown data elements (null values) in the
database on the basis of the other “known” fields. This
requires generation of rules that have the attribute to
be predicted occurring as a rule consequent; applica-
tion of such rules to the current database state, and the
substitution of the the nulls with predicted data values.
This can be written as a host language (say C or C++)
program with embedded rule queries and possibly stan-
dard database queries as well [10].

Thus, rule querying can be embedded in a host pro-
gramming language, or it can also be used for free-
form, interactive querying. The answer to a rule query

will prompt the user to launch another, perhaps
incrementally different query or even generate a mas-
sive number of new queries against the database.
Therefore the querying process generally consists of a
sequence of queries, the next one related to, or built
upon each preceding one. This requires additional
features. For example, the user can take advantage of
the previous query, by slightly modifying it or by taking
a rule which is a part of the answer and mining around
it. Notice, also, that queries themselves may require
the system to perform complex search tasks that may
lead to nondeterministic computations. Thus, queries
serve only as general and often loose specifications for
the system to provide varying degrees of user control
over the discovery process. (In this way even a fully
“automated” discovery can be viewed as query evalua-
tion for a very loose and broadly specified query.)

For example, finding the rule about patients with
heart disease, the user may want to mine around the
rule to get a subpopulation of these patients that satis-
fy this rule in an even stronger sense.

Rule Query Languages

Several rule query languages have been proposed so
far. In general, rule query languages include two cate-
gories: those targeted at propositional rules, such as
the rules defined in the previous section, and query
languages dealing with predicate rules. In this section
we briefly review the main features.

In [9] a rule query language to query predicate
rules with statistical quantifiers is described.

Rule queries allow different types of closure opera-
tors. (Not to be confused with the earlier defined clo-
sure principle, the result of the rule query can contain
rules that look similar, but are different from the query
template.) For example, a closure operation might
allow additional conditions of the form (x.m = v) to be
added to the rule. Other closure operators allow sub-
stituting the set of values for a given variable (* opera-
tor) and adding extra predicates to the rule body. This
leads to rules that are more specific than the rule con-
stituting the query pattern. Additionally, the user may
specify the desirable support (which reflects the statis-
tical significance of the rule) and confidence (which
reflects the rule strength).

Shen, et al. [13] consider the logic programming
language LDL++ as a metapattern querying language.
The higher-order features of LDL++ allow for met-
alevel querying where, for instance, the predicates in
the rules are only loosely specified (such as “Family
Characteristic” metapredicate which stands for a col-
lection of possible predicates dealing with family
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data). As an example of the metapattern notation, a
pattern

P(X Y) And Q(Y Z) ==> R(X Z)

looks for predicate rules expressing transitive relation-
ships between binary predicates P, Q, and R.

On the other hand, there is no support for statisti-
cal quantification expressing imprecise rules in terms
of confidence and support. It is also not clear how fea-
tures such as mining around a rule can be represented
in LDL++-based mining, without actual modification
of LDL++ itself. Regardless, LDL++ seems to be a good
starting point for rule querying languages.

Inductive logic programming methods [5] also deal
with goal-oriented rule discovery; another term for
user-specified querying. 

Finally, the M-SQL approach of Imielinski and Vir-
mani [10] extends SQL with rule mining features to
query propositional rules. Their work differs from the
work here by not using the logic programming path
but building upon a standard C++/SQL interface with
possible persistent classes (such as those offered, for
instance, by Object Store). They add one additional
operator Mine to SQL, allowing rule generation from
the database as well as retrieval from the rulebase, cre-
ated to store some of the previously generated rules.
Other query language proposals to query rules include
[11]. These do not, however, seem to support the clo-
sure principle.

Finding Rules and Compiling Queries

Existing work on data mining already provides possi-
bilities for realizing the goals mentioned in the previ-
ous sections. We now review some of the algorithms
originally suggested for the discovery of “association
rules” [1, 2]. We will give a classification of different
methods and show how these algorithms can in fact be
used as rule query evaluators.

There is a simple observation often used to make
the running time of rule generation dependent on the
number of rules produced. In order to generate a
propositional rule of the form, Body ==> Consequent,
we first measure support (number of tuples) satisfying
the body of the rule—a conjunct of descriptors—then
we measure support of the conjunct which is a con-
junction of Body and Consequent. We divide the for-
mer by the latter to get the rule confidence.

In order to generate a massive number of rules that
satisfy the rule query conditions, we first generate a
number of frequent conjuncts along with their sup-
port. Rules are generated from such conjuncts using

the rule formation step just mentioned.
The key aspect of all different algorithms based on

so-called association mining is based on the observa-
tion that rule support can be used as an effective prun-
ing criterion. Basically, if a given conjunct does not
meet the minimum support constraints, there is no
point in extending it any further by adding extra con-
ditions since any resulting extension would not meet
support.

There are two main types of algorithms for com-
puting the collection of frequent conjuncts: bottom-up
methods and indexing methods. In the bottom-up
approach introduced in [1], the database is scanned
several times. For each pass, a set of candidate con-
junctions is generated, and then their support is evalu-
ated. In the simplest approach, the first pass leads to
1-descriptor conjunctions, the second pass to 2-
descriptor conjunctions, and so forth. Conjunctions
that do not meet support requirements are discarded.
At each level, one has to investigate only conjunctions
known to have sufficient support for their subconjunc-
tions. The process terminates when no more conjuncts
meeting the query requirements can be generated.

In the indexing approach, first inverted lists (index-
es) are formed for each individual attribute specified
in the query. An inverted list is a linked list of all object
identifiers for objects satisfying a given descriptor. The
process then proceeds by merging the linked lists per-
forming essentially index ANDing for larger and larg-
er subsets of the original attribute set until no more
support or attributes can be added.

As an example, consider again the sample rule
query given. Finding the answer to this query requires
evaluating all frequent conjuncts of the description
language, and also discretizing the continuous attrib-
utes like Age. The pruning criterion on the frequency
of the conjuncts can be used efficiently. Furthermore,
analogously to the principle of “pushing selections
inward” in the optimization of ordinary queries, one
can compile the selection condition

R.consequent = (Age = *)

into the rule-finding method. Namely, one needs to
find only frequent conjuncts such that a restriction on
Age is included. This restriction can be embedded into
the generation phase for new candidates. Similar opti-
mizations can actually be done with a variety of condi-
tions on the interesting rules.

Both the indexing and the bottom-up methods have
been shown to work effectively on real data of millions
of records [3, 12]. The time usage varies linearly with



the size of the input data set, and also linearly with the
size of the output. These methods are beginning to
appear in data mining products. Their drawback is
that if there is a long conjunction with sufficient sup-
port, all subconjunctions will necessarily be generated
leading in the worst case to exponential complexity (in
terms of the number of attributes). Agrawal, et al. [3]
provide some comparisons of performance between
the bottom-up and covering-set approaches.

These bottom-up and indexing methods were devel-
oped for finding simple association rules. One can use
them for various other types of formalisms, too, includ-
ing finding patterns from sequences of events.

Conclusion

It took database researchers more than 20 years to
develop efficient query optimization and execution
methods for relational query languages. In this article
we have claimed that specification, compilation and
execution of query languages for database mining is a
challenge that requires a similar, long-term effort
extending to the next decade and beyond. 

In the same way business applications are currently
supported using SQL-based API, the KKD applications
need to be provided with application development sup-
port. In addition to the ability to query KDD objects, data
mining query languages need to provide better support
for such useful data mining operations as finding nearest
neighbor (neighbors), clustering, or discretization and
aggregate operations on data objects. Developments in
multidimensional databases such as Essbase from Arbor
Software are beginning to meet these goals. The recent
introduction of the data cube basic operation [7] is an
interesting suggestion in this direction. 

We have argued that development of querying tools
for data mining is one of the big challenges to the data-
base community. This work requires interdisciplinary
synergy between databases, machine learning, statis-
tics, pattern recognition as well as high-performance
computing. We have shown some of the preliminary
work on rule query languages that does not yet inte-
grate KDD objects other than rules. There is a definite
need for complete KDD query languages in which clas-
sification trees, neural nets, clustering tools, and so
forth, can fully interoperate with existing query lan-
guages as well as among themselves.

Although KDD objects are basic objects of data min-
ing applications, they are hardly a final product, just as
tuples or records are typically not a final product of
database applications. Typically, KDD objects generat-
ed by queries will be embedded in more complex
applications that may involve spreadsheets, further sta-

tistical analysis packages, graphical tools, and so forth.
Therefore, it is very important to provide application
developers with tools to build applications using a
KDD query language as only one of the building
blocks. Second-generation database mining systems
should achieve these goals. 
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