
Adaptive Pattern Matching on Binary Data?

Per Gustafsson and Konstantinos Sagonas

Department of Information Technology, Uppsala University, Sweden
{pergu,kostis}@it.uu.se

Abstract. Pattern matching is an important operation in functional programs.
So far, pattern matching has been investigated in the context of structured terms.
This paper presents an approach to extend pattern matching to terms without
(much of a) structure such as binaries which is the kind of data format that net-
work applications typically manipulate. After introducing a notation for match-
ing binary data against patterns, we present an algorithm that constructs a tree
automaton from a set of binary patterns. We then show how the pattern matching
can be made adaptive, how redundant tests can be avoided, and how we can fur-
ther reduce the size of the resulting automaton by taking interferences between
patterns into account. The effectiveness of our techniques is evaluated using im-
plementations of network protocols taken from actual telecom applications.

1 Introduction

Binary data are omnipresent in telecom and computer network applications. Many for-
mats for data exchange between nodes in distributed computer systems (MPEG, ELF,
PGP keys, yEnc, JPEG, MP3, GIF, . . .) as well as most network protocols use binary
representations. The main reason for using binaries is size; a binary is a much more
compact format than the symbolic or textual representation of the same information.
Consequently, less resources are required to transmit binaries over the network.

When binaries are received, they typically need to be processed. Their processing
can either be performed in a low-level language such as C (which can directly manip-
ulate these objects), or binaries need to be converted to some non-binary term repre-
sentation and manipulated by a high-level language such as a functional programming
language. The main problem with the second approach is that most high-level languages
do not provide adequate support for binary data. As a result, programming tends to be-
come pretty low level anyway (e.g., use of bit-shifts) and the necessary conversion takes
time and results in a format which requires more space to be stored. So, both for con-
venience and out of performance considerations, it is frequent that the first approach is
followed; despite the fact that this practice is possibly error-prone and a security risk.

Our aim is to make programming of telecom and packet filter applications using
high-level languages both easier and more efficient than its counterpart in low-level lan-
guages such as C. More specifically, given a functional programming language which
has been enriched with a binary data type and a convenient notation to perform pat-
tern matching on binaries, we propose methods to extend a key feature of functional
programs, pattern matching, to binary terms.
? Research supported in part by grants from ASTEC, Vetenskapsrådet, Ericsson, and T-Mobile.

Doing so is not straightforward for the following two reasons. First, unlike pattern
matching on structured terms where arities and argument positions of constructors are
statically known, binary pattern matching needs to deal with the fact that binaries have a
totally amorphous structure. Second, typical uses of binaries (e.g. in network protocols)
are such that certain parts of the binary (typically its headers) encode information about
how many parts the remaining binary contains and how these parts are to be interpreted.
An effective binary pattern matching scheme has to effectively cater for these uses.

On the other hand, the potential performance advantages of our approach should
be clear: indeed, hand-coded pattern matchers, even in C, can hardly compete with
those derived automatically using a systematic algorithm, once the sizes of the patterns
becomes significant.

This paper presents an adaptive binary pattern matching scheme, based on decision
trees, that is tailored to the characteristics of binaries in typical applications. The reason
we use decision trees is that they result in fast execution (since each constraint on the
matching is tested at most once).1 Our implementation is based on the Erlang/OTP sys-
tem; a system which is used to develop large telecom applications where binary pattern
matching allows implementation of network protocols using high-level specifications.

The structure of the rest of the paper is as follows: the next section overviews a
notation for matching binary data against patterns. Although the notation is that of
ERLANG, the ideas behind it are generic. After introducing a definition of what binary
pattern matching is (Sect. 3), we present an algorithm that constructs a tree automaton
from a set of binary patterns (Sect. 4). We then show how to perform effective pruning
(Sect. 4.2), how pattern matching can be made adaptive (Sect. 4.3), how redundant tests
can be avoided, and how the size of the resulting automaton can be further reduced
by taking interferences between patterns into account (Sect. 5). After reviewing related
work (Sect. 6), we evaluate the effectiveness of our techniques (Sect. 7), and conclude.

2 Binaries in Erlang

ERLANG’s bit syntax allows the user to conveniently construct binaries and match these
against binary patterns. A simplified introduction to ERLANG’s bit syntax appears be-
low; for more information, see [12, 17].

In ERLANG, a binary is written with the syntax <<Seg1,Seg2,. . .,Segn>> and
represents a sequence of machine bits that are byte-aligned. Each of the Segi’s specifies
a segment of the binary, which represents an arbitrary number of contiguous bits in the
binary. Segments are placed next to each other in the same order as they appear in the
bit syntax expression.

Each segment expression has the general syntax Value:Size/Specifierswhere
both the Size and the Specifiers fields can be omitted since there are default val-
ues for them; see [12]. The Value field must however always be specified. In a bi-
nary matching expression, the Value can either be an Erlang term (of any type) or an
unbound variable. The Size field, which denotes the number of bits of the segment,

1 However, since the size of the tree automaton is exponential in the worst case, the full version
of this paper [8] also presents an alternative approach to compiling binary pattern matching
which is conservative, and more specifically linear, in space.

2

can either be statically an integer or a variable that will be bound to an integer. The
Specifiers can be used to specify how the segment should be interpreted (e.g., what
is its type). For simplicity of presentation, only integer and binary specifiers will be
used in this paper; see [12] for the complete set of specifiers. Moreover, a binary type
specifier will mean that this segment is viewed as the tail (i.e., the complete remaining
part) of the binary. Binary tail segments will have no explicit size specified for them.

Binary Matching The syntax for matching with a binary if Binary is a variable bound
to a binary is <<Seg1,Seg2,. . .,Segn>> = Binary. The Valuei fields of the Segi

expressions, which describe each segment, will be matched to corresponding segments
in Binary. For example, if the Value1 field in Seg1 contains an unbound variable and
the size of this segment is 16, this variable will be bound to the first 16 bits of Binary.

Example 1. As shown below, binaries are often constructed as a sequence of comma-
separated unsigned 8 bit integers inside <<>>’s, but pattern matching can select parts of
binaries whose size is less than a byte long (and actually there are no byte-alignment
restrictions). The ERLANG code:

<<A1:3/integer, A2:5/integer, B/binary>> = <<42,43,44>>

results in the binding A1=1, A2=10, B=<<43,44>>. Here A1 matches the first three bits.
These bits are interpreted as an unsigned, big-endian integer. Similarly, A2 matches the
next five bits. B is matched to the rest of the bits of the binary <<42,43,44>>. These
bits are interpreted as a binary since the segment has this type specifier.

Example 2. Size fields of segments are not always statically known. This occurs quite
often and complicates the pattern matching operation in our context. The code:
<<Sz:8/integer, Vsn:Sz/integer, Msg/binary>> = <<16,2,154,11,12>>

results in the binding Sz=16, Vsn=666, and Msg=<<11,12>>.

Example 3. Naturally, pattern matching against a binary can occur in a function head
or in a case statement just like any other matching operation as in the code below:
case Binary of

<<42:8/integer, X1/binary>> -> X = X1, handle1(X);

<<Sz:8, V:Sz/integer, X2/binary>> when Sz > 16 -> X = X2, handle2(V,X);

<< :8, X3:16/integer, Y:8/integer>> -> X = X3, handle3(X,Y)

end.

Here Binary will match the pattern in the first branch of the case statement if its
first 8 bits represented as an unsigned integer have the value 42. In this case, X1 (and
later X) will be bound to a binary consisting of the rest of the bits of Binary. If this
is not the case, then Binary will match the second pattern if the first 8 bits of Binary
interpreted as an unsigned integer are greater than 16. Notice that this is a non-linear and
guarded binary pattern. Finally, if Binary is exactly 32 bits long, X (through X3) will be

Binary matching of X
<<42,14,15>> <<14,15>>

<<24,1,2,3,10,20>> <<10,20>>

<<12,1,2,20>> 258

<<0,255>> failure

bound to an integer consisting of the second and
third byte of the Binary (taken in big-endian or-
der). If neither of the patterns match, the whole
match expression will fail. On the right, we
show three examples of matchings and a failure
to match using this code.

3

3 Binary Pattern Matching Definitions

We assume the usual definition of when two non-binary terms (integers, compound
terms, . . .) match. A binary pattern matching is defined by a binary term and a set of
binary patterns, which is ordered with respect to the priority of the patterns.

In a binary pattern matching compiler, each binary pattern bi consists of a list of
segments [seg1, . . . , segn] and is associated with a success label which is denoted by
SL(bi).2 Each segment is represented by a tuple segi = 〈vi, ti, pi, si〉, i ∈ {1, . . . , n}
consisting of a value, a type, a position, and a size field. The value and type fields
contain the term in the Value field and the type Specifier of the corresponding seg-
ment, respectively. The size field si represents the Size of the segment in bits. When
the size is statically known, si is an integer constant. Otherwise, si is either a vari-
able which will be bound to an integer at runtime, or the special don’t care variable
(denoted as) which is used when the last segment, segn, is of binary type with-
out any constraint on its size (cf. the first two binary patterns of Ex. 3). The pi field
denotes the position where segment segi starts in the binary. If the size values of all
preceding segments are statically known, then pi is just an integer constant and is
defined as pi =

∑i−1

j=1
sj . However, the presence of variable-sized segments com-

plicates the calculation of a segment’s position. In such cases, we will denote pi’s as
c + V where c is the sum of all sizes of preceding segments which are statically known
and V is a symbolic representation of the sum of all sj terms of preceding segments
whose values are variables. For example, the binary pattern of Ex. 2 is represented as
[〈Sz, integer, 0, 8〉, 〈Vsn, integer, 8, Sz〉, 〈Msg, binary, 8 + Sz, 〉].

Each binary pattern corresponds to a sequence of actions obtained by concatenating
the actions of its segments. The actions of each segment generally consist of a size and a
match test. Each match test includes an associated read action which is to be performed
before the actual match test. These are defined below.

Definition 1 (Size test). For each segment segi = 〈vi, ti, pi, si〉 of a binary pattern
[seg1, . . . , segn], if si 6= , we associate a size test st defined as

st =

{

size(=, pi + si) if i = n

size(≥, pi + si) otherwise

Given a binary b, st succeeds if the size of b in bits is equal to (resp. at least) pi + si.

Note that no size test is associated with a tail binary segment (a segment where si =).
Also, although positions and sizes might not be integer constants statically, in type-
correct programs, they will be so at runtime. Thus the second argument of a size test
will always be (evaluable to) an integer constant at runtime.

Definition 2 (Read action). For a segment 〈v, t, p, s〉, the corresponding read action
(denoted read(p, s, t)) is as follows: given a binary b, the action reads s bits starting
at position p of b, constructs a term of type t out of them, and returns the constructed
term. When s = the action reads the remaining part of the binary.

2 The fail labels are implicitly defined by the order of the patterns; the fail labels of every bk, 1 ≤
k ≤ n − 1 point to bk+1 except for the fail label of bn which points to a failure action.

4

Definition 3 (Match test). For a segment 〈v, t, p, s〉, a match test (which is denoted
match(v, ra) where ra is the corresponding read action) succeeds if the term r returned
by ra matches v. If the match test is successful, the variables of v get bound to the
corresponding subterms of r.

Example 4. Action sequences for the three binary patterns in the case statement of Ex. 3
are shown below:

b1 = {size(≥,8), match(42,read(0,8,integer)), match(X1,read(8, ,binary))}
b2 = {size(≥,8), match(Sz,read(0,8,integer)),

size(≥,8+Sz), match(V,read(8,Sz,integer)), match(X2,read(8+Sz, ,binary))}
b3 = {size(=,32), match(X3,read(8,24,integer)), match(Y,read(24,32,integer))}

Note that the above action sequences are optimized. Size tests which are implied by
other ones have been removed and match tests which do not influence the binary match-
ing have also been eliminated. For example, without any optimizations, b3 is:

b3 = {size(≥, 8), match(,read(0,8,integer)),

size(≥,24), match(X3,read(8,24,integer)),
size(=,32), match(Y,read(24,32,integer))}

Since there is a tight correspondence between segments and action sequences, rep-
resenting a binary pattern using segments is equivalent to representing it using actions.
Since actions are what is guiding the binary pattern matching compilation, we hence-
forth represent binary patterns using action sequences and use the terms binary patterns
and action sequences to mean the same thing.

Definition 4 (Static size equality). Two sizes s1 and s2 are statically equal (denoted
s1 = s2) if they are either the same integer or the same variable.

Definition 5 (Static position equality). Two positions p1 and p2 are statically equal
(denoted p1 = p2) if their representations are identical (i.e., if they are either the same
constant, or they are of the form c1 + V1 and c2 + V2 where c1 = c2 and V1 is the same
multiset of variables as V2).

Definition 6 (Statically equal read actions). Two read actions ra1 = read(p1, s1, t1)
and ra2 = read(p2, s2, t1) are statically equal (denoted ra1 = ra2) if s1 = s2,
p1 = p2, and t1 = t2.

Definition 7 (Size test compatibility). Let |b| denote the size of a binary b. A size test
st = size(op, p+s) where op ∈ {=,≥} is compatible with a binary b (denoted st v b)
if (p + s) op |b|. If the condition does not hold, we say that the size test is incompatible
with the binary (st 6v b).

Definition 8 (Match test compatibility). Let ra = read(p, s, t) be a read action. A
match test mt = match(v, ra) is compatible with a binary b (denoted mt v b) if ra (or
more generally a read action which is statically equal to ra) has been performed and
the sub-binary of size s starting at position p of b when read as a term of type t matches
with the term v. If the term v does not match, we say that the match test is incompatible
with the binary (mt 6v b).

We can now formally define what binary pattern matching is. In the following defi-
nitions, let B denote a set of binary patterns ordered by their textual priority.

5

Definition 9 (Instance of binary pattern). A binary b is an instance of a binary pat-
tern bi ∈ B if b is compatible with all the tests of bi.

Definition 10 (Binary pattern matching). A binary pattern bi ∈ B matches a binary
b if b is an instance of bi and b is not an instance of any bj ∈ B, j < i.

4 From a set of Binary Patterns to a Tree Automaton

The construction of the tree automaton begins with an ordered set of k binary patterns
which have been transformed to the corresponding action sequences B = {b1, . . . , bk}.
The construction algorithm, shown below, builds the tree automaton for B and returns
its start node. Each node of the automaton consists of an action and two branches (a
success and a failure branch) to its children nodes. In interior nodes, the action is a test.
In leaf nodes, the action is a goto a success label, or a failure action.

Given an action a and a set of action sequences B, the action implicitly creates
two sets, Bs and Bf . Action sequences in Bs are sequences from B that either do not
contain a, or sequences which are created by removing a from them. Bf are action
sequences from B that do not contain a. These two sets are driving the construction of
the tree automaton. More specifically, the success and failure branches of an interior
node point to subtrees that are created by calling the construction algorithm with Bs

and Bf , respectively.

Procedure Build(B)
1. u := new node()
2. if B = ∅ then
3. u.action := failure

4. else
5. b0 := the action sequence of the

highest priority pattern in B

6. if current actions(b0) = ∅ then
7. u.action := goto(SL(b0))
8. else
9. a := select action(B)

10. u.action := a

11. Bs := prune compatible(a, B)
12. u.success := Build(Bs)
13. Bf := prune incompatible(a, B)
14. u.fail := Build(Bf)
15. return u

The tree automaton operates on an
incoming binary b. The algorithm that
constructs the tree is quite straightfor-
ward. A given node u corresponds to a
set of patterns that could still match b

when u has been reached. If this set
is empty, then no match is possible
and a fail leaf is created (lines 2–3).
When there are still patterns which can
match, the action sequence of the high-
est priority pattern (b0) is examined.
If it is now empty, then a match has
been found (lines 5–7). Otherwise, the
select action procedure chooses one
of the remaining actions a (a size or
match test) from an action sequence in
B. This is the action associated with the
current node. Based on a, procedures
prune compatible and prune incompatible construct the Bs and Bf sets de-
scribed above. The success and failure branches of the node are then obtained by re-
cursively calling the construction algorithm with Bs and Bf , respectively (lines 9–14).

The select action procedure controls the traversal order of patterns, making the
pattern matching adaptive. It is discussed in Sect. 4.3. The prune * procedures can be
more effective in the amount of pruning that they perform. This is discussed in Sect. 4.2.

6

Notice that the match tests naturally handle non-linearity in the binary patterns.
Also, although not shown here, it is quite easy to extend this algorithm to allow it to
handle guarded binary patterns. The only change that needs to be made is to add guard
actions to the action sequences.

4.1 Complexity

The worst case for this algorithm is when no conclusions can be drawn to prune actions
and patterns from B. In this case, the size of the constructed tree automaton is exponen-
tial in the number of actions (segments) in a pattern. The time complexity for the worst
case path through this tree is linear in the total number of segments.

4.2 Pruning

Let a be an action of a node. Based on a, procedure prune compatible creates a
pruned set of action sequences by removing a (or more generally actions which are
implied by a) and action sequences which contain a test a′ that will fail if a succeeds.
Similarly, procedure prune incompatible creates a pruned set of action sequences
by removing action sequences which contain a test a′ that will fail if a fails, and actions
that succeed if a fails. The functionality of these procedures can be described as follows:

prune compatible(a, B) Removes all actions from action sequences in B which
can be proven to be compatible with any binary b such that a v b and all action
sequences that contain an action which can be proven to be incompatible with any
binary b such that a v b.

prune incompatible(a, B)Removes all actions from action sequences in B which
can be proven to be compatible with any binary b such that a 6v b and all action
sequences that contain an action which can be proven to be incompatible with any
binary b such that a 6v b.

Size test pruning Using size tests to prune the tree automaton for binary pattern match-
ing is similar to switching on the arity of constructors when performing pattern match-
ing on structured terms. If = were the only comparison operator in size tests, the sim-
ilarity would be exact. Since in binary pattern matching the size test operator can also
be ≥ and sizes of segments might not be statically known, the situation in our context
is more complicated.

To effectively perform size test pruning we need to setup rules that allow us to infer
the compatibility or incompatibility of some size test st1 with any binary b given that
another size test st2 is either compatible or incompatible with b.

In order to construct these rules we need to describe how size tests can be compared
at compile time. Consider a size test, st = size(op, se) where op is a comparison
operator and se a size expression. In the general case, the size expression will have
the form c + V where c is a constant and V is a multiset of variables. The following
definition of how to statically compare size expressions is based on what can be inferred
about two different size expressions c1+V1 and c2+V2, assuming that during run-time,
all variables in V1 and V2 will be bound to non-negative integers (or else a runtime type
exception will occur).

7

Table 1. Size pruning rules.

(a) Rules for prune compatible(st, B)

op opi relation conclusion
≥ ≥ se ≥ sei sti v b

≥ = se > sei sti 6v b

= ≥ se ≥ sei sti v b

= ≥ se < sei sti 6v b

= = se = sei sti v b

= = se 6= sei sti 6v b

(b) Rules for prune incompatible(st, B)

op opi relation conclusion
≥ ≥ sei ≥ se sti 6v b

≥ = sei ≥ se sti 6v b

= = se = sei sti 6v b

Definition 11 (Comparing size expressions statically). Let se1 = c1 + V1 and se2 =
c2 + V2 be two size expressions.

– se1 is statically equal to se2 (denoted se1 = se2) if c1 = c2 and V1 is the same
multiset as V2;

– se1 is statically bigger than se2 (denoted se1 > se2) if c1 > c2 and V1 is a superset
of V2;

– se1 is statically bigger or equal to se2 (denoted se1 ≥ se2) if se1 > se2 or se1 =
se2 or c1 = c2 and V1 is a superset of V2;

– se1 is statically different than se2 (denoted se1 6= se2) if either se1 > se2 or
se1 < se2.

Let b be any binary such that a size test st v b (is compatible with b). In the
prune compatible(st, B) procedure we want to prune all size tests sti such that sti
is contained in some action sequence in B and sti v b. We also want to prune all action
sequences in B that contain a size test stj such that stj 6v b. If st = size(op, se) and
sti = size(opi, sei) then Table 1(a) presents the conclusion which can be drawn about
the compatibility of sti with b given values for op and opi and a static comparison of
size expressions se and sei.

Now let b be any binary such that a size test st 6v b (is incompatible with b). The
prune incompatible(st, B)procedure will prune all action sequences in B that con-
tain a size test sti such that sti 6v b. Table 1(b) presents when it is possible to infer this
size test incompatibility given values for op, opi, and a static comparison of se and sei.

The following example illustrates size test pruning.

Example 5. Let st = size(=, 24 + Sz) and B = {b1, b2, b3, b4} where:

b1 = {size(=, 24 + Sz), a1,2, . . . , a1,n1
}

b2 = {size(≥, 24), a2,2, . . . , a2,n2
}

b3 = {size(=, 16), . . .}
b4 = {size(≥, 32 + Sz), . . .}

and let ai,j be actions whose size expressions cannot be compared with the size ex-
pression of st statically. Then prune compatible(st, B) = {b′1, b

′
2} where b′1 =

{a1,2, . . . , a1,n1
}, and b′2 = {a1,2, . . . , a2,n2

}. Why the size test st is removed from
b1 should be obvious. In b2, the size test size(≥, 24) is implied by st (see third row
of Table 1(a)) and is removed. Sequences b3 and b4 each contain a size test which is
false if st succeeds (this is found by looking at rows six and four of Table 1(b)) and are
pruned. We also have that prune incompatible(st, B) = {b2, b3, b4}.

8

Match test pruning A simple form of match test pruning can be based on the concept
of similarity. Let b be a binary and mt1 = match(v1, ra1) and mt2 = match(v2, ra2)
be two match tests whose read actions ra1 and ra2 are statically equal. If v1 = v2, then
we have the following rules:

mt1 v b ⇒ mt2 v b

mt1 6v b ⇒ mt2 6v b

If both v1 and v2 are constants and v1 6= v2, we get the additional rule:

mt1 v b ⇒ mt2 6v b

In Sect. 5.3 we describe how to extract more information from the success or failure
of a match test by taking interference of actions into account. Doing so, increases the
effectiveness of match test pruning.

4.3 Selecting an action

The select action procedure controls the traversal order of actions and makes the
binary pattern matching adaptive. It also allows discussion of the binary matching al-
gorithm without an a priori fixed traversal order.

For the binary pattern matching problem, there are constraints on which actions can
be selected from the action sequences. A size test can not be chosen unless its size
expression can be evaluated to a constant. Similarly, match tests whose read actions
have a yet unknown size cannot be selected. More importantly, a match test cannot be
selected unless all size tests which precede it have either been selected or pruned. This
ensures the safety of performing the read action which a match test contains: otherwise a
read action could access memory which lies outside the memory allocated to the binary.

What we are looking for is to select actions which perform effective pruning and
thus make the size of the resulting tree automaton small. Since both constructing an op-
timal decision tree and a minimal order-containing pruned trie are NP-complete prob-
lems [9, 5], we employ heuristics. One such heuristic is to select an action which makes
the size of the success subtree of a node small. Such actions are defined below.

Definition 12 (Eliminators). Let B = {b1, . . . , bk} be a set of action sequences. A test
α (of some bj ∈ B) is an eliminator of m sequences if exactly m members of B contain
a test which will not succeed if α succeeds. A test α is a perfect eliminator if it is an
eliminator of k − 1 sequences. A test α is a good eliminator if it is an eliminator of m

sequences and for all l > m there do not exist eliminators of l sequences.

So, what we are looking for is good eliminators; ideally, for perfect ones. If a perfect
eliminator exists each time the select action procedure is called, then the size of the
tree automaton will be linear in the total number of actions. Also, the height of the tree
(which controls the worst time it takes to find a matching) will be no greater than the
number of patterns plus the maximum number of actions in one sequence.

In the absence of perfect eliminators, the heuristics below can be used. Some of
them reduce the size of the tree and some the time needed to find a matching.

9

Eliminator A good eliminator is chosen. As a tie-breaker, a top-down, left-to-right
order of selecting good eliminators is followed.

Pruning The action which minimizes the size of the sets of action sequences returned
by the prune * procedures is chosen. A top-down, left-to-right order is used as a
tie-breaker.

Left-to-Right This is the commonly used heuristic of selecting actions in a top-down,
left-to-right fashion. This heuristic does not result in adaptive binary pattern match-
ing, but on the other hand it is typically effective as the traversal order is the one
that most programmers would expect (and often program for!); see also [13].

5 Optimizations

The algorithm presented in Sect. 4 is quite inefficient when it comes to the size of the
resulting tree automaton. We now present some optimizations that can decrease its size;
often very effectively.

5.1 Generating shorter action sequences

Simple ways to avoid unnecessary work are to eliminate size tests which are implied
by other ones and to not generate match tests (and their corresponding read actions) for
variables that are unused. We have already shown these optimizations in Ex. 4. Another
easy way to make the tree more compact is to preprocess the original binary patterns
so that they contain fewer segments. Two adjacent segments with constant terms as
values can be coalesced into one so that only one match test is generated for them.
For example, the pattern <<0:8, 1:8, B/binary>> can be source-transformed to the
equivalent binary pattern <<1:16, B/binary>>.

5.2 Turning the tree automaton into a DAG

Creating a directed acyclic graph (DAG) instead of a tree is a standard way to decrease
the size of a matching automaton. One possible choice is to construct the tree automaton
first, and then use standard FSA minimization techniques to create the optimal DAG.
This is however impractical, since it requires that a tree automaton of possibly expo-
nential size is first constructed. Instead, we can use a concept similar to memoization
to construct the DAG directly. We simply remember the results we got from calling the
Build procedure, and if the procedure is called again with the same input argument we
return the subtree that was constructed at that time.

Turning a tree into a DAG does not affect the time it takes to perform binary pattern
matching. This is evident since the length of paths from the root to each leaf is not
changed. It is difficult to formalize the size reduction obtained by this optimization, as
it depends on the characteristics of the action sequences and its interaction with action
pruning. In general, the more the pruning that the selected actions perform, the harder
it is to share subtrees. However, in our experience, turning the tree into a DAG is an
effective size-reducing optimization in practice.

10

5.3 Pruning based on interference of match tests

Pruning based on match tests (Sect. 4.2) takes place when two match tests contain read
actions which are statically equal. We can increase the amount of pruning performed
based on match tests by taking interferences between match tests into account. Consider
the following example:

Example 6. In binary patterns b1 = <<Sz:4,0:12,X:Sz>> and b2 = <<255:8,. . .>>

there are not any statically equal read actions in match tests. However, it is clear that
if the match test associated with the second segment of b1 succeeds, then b2 cannot
possibly match the incoming binary. This is because these match tests interfere. The
notion is formalized below.

Definition 13 (Interference). Let p1 and p2 be statically known positions and p1 ≤ p2.
Also, let s1 and s2 be statically known sizes. Match tests match(v1, read(p1, s1, t1))
and match(v2, read(p2, s2, t2)) interfere if p1 + s1 > p2. Their common bits are bits
in the range [p2, . . . , min(p2 + s2, p1 + s1)].

For pruning purposes, the concept of interfering match tests is only interesting when
both terms v1, v2 of the match tests are known. Let us denote the common bits of v1

and v2 by v′1 and v′2, respectively.

Definition 14 (Enclosing match test). Let mt1 = match(v1, read(p1, s1, t1)) and
mt2 = match(v2, read(p2, s2, t2)) be two match tests which interfere and let p1 ≤ p2.
We say that mt1 encloses mt2 (denoted mt1 ⊇ mt2) if p1 + s1 ≥ p2 + s2.

Let mt1 and mt2 be match tests which interfere and v′
1 and v′2 be their common bits.

Then mt2 will be:

1. compatible with all binaries that mt1 is compatible with if v′
1 = v′2 and mt1 ⊇ mt2;

2. incompatible with all binaries that mt1 is compatible with if v′
1 6= v′2;

3. incompatible with all binaries that mt1 is incompatible with if mt2 ⊇ mt1 and
v′1 = v′2.

The first two rules can be used in the prune compatible(mt1, B) procedure to prune
interfering match tests. Similarly, the last rule can be used to guide the pruning in the
prune incompatible(mt1, B) procedure.

5.4 Factoring read actions

To ease exposition of the main ideas, we have thus far presented read actions as tightly
coupled with match actions although they need not really be. Indeed, read actions can
appear in the action field of tree nodes. Such tree nodes need a success branch only (their
failure branch is null). With this as the only change, read actions can also be selected by
the select action procedure, statically equal read actions can be factored, and read
actions can be moved around in the tree (provided of course that they are still protected
by the size test that makes them safe).

Since, especially in native code compilers, accessing memory is quite expensive,
one important optimization is to avoid unnecessary read actions. This can be done if

11

there is a read action that is statically equal to a read action which has already been per-
formed. Then the result of the first read action can be saved in some temporary register,
and the second read action can be replaced by a use of that register. Our experience is
that in practice this optimization significantly reduces the time to perform binary pattern
matching.

Also, to reduce code size, standard compiler techniques like code hoisting can be
used to move a read action to a node in the tree where a statically equal read action will
be performed on all successful paths from that node to a leaf. These read actions can
then be removed, reducing the code size.

6 Related Work

In functional languages, compilation schemes for efficient pattern matching over struc-
tured terms have been developed and deployed for more than twenty years. Their main
goal has been to make the right trade-off between time and space costs. The backtrack-
ing automaton approach [1, 15] is a priori economical in space usage (because patterns
never get compiled more than once) but is inefficient in time (since the same symbols
can be inspected several times). This is the approach used in implementations of typed
functional languages such as Caml and Haskell. In the context of the Objective-Caml
compiler, [10] suggested using exhaustiveness and incompatibility characteristics of
patterns to improve the time behavior of backtracking automata. Exhaustiveness is only
applicable when constructor-based type definitions are available, and thus cannot be
used in binary pattern matching. In our context, a kind of incompatibility-based prun-
ing is obtained by taking advantage of match test interference (Sect. 5.3).

Deterministic tree automata approaches have been proposed before; e.g. [3, 14].
Such tree-based approaches guarantee that no constructor symbol is inspected twice, but
doing so leads to exponential upper bounds on the automaton size. One way of dealing
with this problem is to try to construct an optimal traversal order to minimize the size
of the tree. However, since the optimization problem is NP-complete, [3] argues that
heuristics should be employed to find near-optimal trees. In the same spirit, [14] also
suggests several different heuristics to synthesize an adaptive traversal order that results
in a tree automaton of small size. To further decrease the size of the automaton they
generate a directed acyclic graph (DAG) automaton by sharing all isomorphic subtrees.
Finally, [13] also examines several different match-compilation heuristics (including
those of [3, 14]) and measures their effects on different benchmarks. However, all these
works heavily rely on being able to do a constructor-based decomposition of patterns,
and to inspect terms in positions which are known statically.

By exploiting the foreign language interface, an API for a bit stream data structure
for Haskell is introduced in [16]. Pattern matching on these bit streams is however not
explored. Some of the techniques presented here could likely be used to implement
pattern matching on bit streams for Haskell which would allow for a less imperative
style of programming. There are however some fundamental differences between our
work and [16] as the lazy setting of [16] might restrict the traversal order of tests.

Several packet filtering frameworks have been developed by the networking com-
munity. Some of them, e.g., PATHFINDER [2], DPF [6] and BPF+ [4], use the backtrack-

12

ing automaton approach to pattern matching to filter packets. To achieve better perfor-
mance common prefixes are collapsed in [2, 6]. In contrast, [4] employs low level opti-
mizations such as redundant predicate elimination to produce efficient pattern matching
code. As far as we know, the tree automaton approach to pattern matching compilation
has not been used in packet filters. We intend to investigate the effectiveness of our
scheme in a packet filter setting. Finally, [11] proposes an external type system for
packet data which allows for type checking of packets and suggests a scheme to use
pattern matching based on type refinement to construct efficient packet filters.

7 Some Experiments

In [7], we presented a scheme for efficient just-in-time compilation of BEAM instruc-
tions that manipulate binaries to native code.3 On a set of benchmarks, when executing
native code but without pattern matching compilation, speedups ranging from 20% to
four times faster compared with BEAM were obtained. With [7] providing an efficient
basis for compiling binary instructions to native code, and with adaptive pattern match-
ing complementing nicely that work, we felt there is no need to do extensive bench-
marking in this paper. We just report on two issues.

7.1 Impact of pruning heuristics and optimizations

As benchmark programs we selected three different (parts of) actual protocol applica-
tions that perform binary pattern matching. The BER-decode matching code is quite
complicated; it contains 14 different patterns and 10 distinct read actions. BS-extract
contains just 4 patterns and 11 distinct read actions (each pattern contains a perfect
eliminator; adaptive selection is required to benefit from it). The PPP-configmatching
code contains 8 different patterns and 7 distinct read actions. Using these benchmarks,
we measured the impact of different heuristics used in the select action function.
The Eliminator, Pruning, and Left-to-Right heuristics are as described in Sect. 4.3.
Both size (the number of nodes in the resulting DAG) and two time-related aspects of
the heuristics are reported: the average (resp. maximum) height of the DAG measured
as the average length of paths (resp. longest path) from a start node to a leaf node.

In Table 2, the Read Hoisting row refers to an optimization which aggressively uses
code hoisting to move read actions up to a node if statically equal read actions exist
on at least two paths from that node. Therefore this optimization yields tree automata
that are small in size. However, the time properties of these automata are rarely better
and actually sometimes worse than those for automata created using the Left-to-Right

heuristic. The Eliminator and Pruning heuristics give similar time characteristics for
these benchmarks, but it seems that the Pruning heuristic yields automata which are
both small in size and with better matching times. As optimizing for time is our current
priority, we find the Pruning heuristic to be the most suitable choice. We are currently
using it as default.

3 BEAM is the virtual machine of the Erlang/OTP (Open Telecom Platform) system. Native
code compilation of binaries is available in Erlang/OTP since Oct. 2002; see www.erlang.org.

13

Table 2. Impact of heuristics and optimizations.

BER-decode BS-extract PPP-config

Heuristic Size Avg. H Max H Size Avg. H Max H Size Avg. H Max H

Eliminator 101 15.30 17 28 17.5 19 40 8.73 10
Pruning 74 14.31 17 28 17.5 19 41 8.73 10
Left-to-Right 78 14.36 17 43 17.5 19 46 10.93 16
Read Hoisting 66 15.50 17 22 17.5 19 28 10.90 15

Table 3. Comparison between programs manipulating binary data written in C and in ERLANG.

Program written in Time
C returning its result as a binary 2220
ERLANG using binary pattern matching 2580
C returning its result as an Erlang term 4110
ERLANG processing the data in the binary represented using a list of integers 41060

7.2 Speed of binary pattern matching in Erlang

Speed is critical in programs implementing telecom and network protocols. It is quite
common for developers to resort to low-level languages such as C in order to speed up
the time-critical parts of their applications, and indeed manipulating bit sequences is
considered C’s bread and butter. So, we were curious to know how well binary pattern
matching in ERLANG compares with manipulating binaries in C.

We found four different versions of the same program whose input is a binary. The
benchmark is taken from the ASN.1 library available in the Erlang/OTP distribution.
Two versions written in C exist: one which is a stand alone program (first row of Table 3)
and one which is used as a linked in C-driver in an application which is otherwise
written in ERLANG. The latter thus needs to return its output in the form of an ERLANG

term, and a translation step takes place as the last step of the C program. The other
two versions are written completely in ERLANG: one manipulates its input as a binary,
performs binary pattern matching and returns a result as an ERLANG term for further
processing, while the last version receives its input as a list of integers (a representation
which could be a reasonable choice if binaries were not part of the language).

As seen in Table 3, showing times in msecs, the stand-alone C program (compiled
using gcc -O3) is the fastest program but is only about 15% faster than the ERLANG

code using adaptive binary pattern matching. When the rest of the application is written
in ERLANG, and a translation step in needed for the C program to be used as a linked-in
driver, the ERLANG code with binary pattern matching is about 60% faster. Using a
list of integers representation rather than a binary data type results in a program with a
rather poor performance. It should be mentioned that the ERLANG programs have been
run with a rather large heap to avoid garbage collections (which C does not perform).

8 Concluding Remarks

From the performance data in Table 3, it should be clear that enriching a functional pro-
gramming language with a binary data type and implementing a binary pattern match-

14

ing compilation scheme such as the ones described in this paper are additions to the
language which are worth their while. Indeed, since 2000 when a notation for binary
pattern matching was introduced to ERLANG [12], binaries have been heavily used in
commercial applications and programmers have often found innovative uses for them.

Our adaptive binary pattern matching compilation scheme will soon find its way into
Erlang/OTP R10 (release 10) from Ericsson, and ERLANG programmers will no doubt
benefit from it. However, the ideas we presented are generic and as we have shown there
is nothing that prevents binaries from being first-class citizens in declarative languages.
For this reason, we hope that other high-level programming languages, which employ
pattern matching, will also benefit from them.

References

1. L. Augustsson. Compiling pattern matching. In Functional Programming Languages and
Computer Architecture, number 201 in LNCS, pages 368–381. Springer-Verlag, Sept. 1985.

2. M. Bailey, B. Gopal, M. Pagels, L. Peterson, and P. Sarkar. PATHFINDER: A pattern-based
packet classifier. In Proceedings of USENIX OSDI Symposium, pages 115–123, Nov. 1994.

3. M. Baudinet and D. MacQueen. Tree pattern matching for ML. Unpublished paper, 1985.
4. A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting global data-flow optimization

in a generalized packet filter architecture. In ACM SIGCOMM, pages 123–134, Aug. 1999.
5. D. Comer and R. Sethi. The complexity of trie index construction. Journal of the ACM,

24(3):428–440, July 1977.
6. D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing using dynamic

code generation. In Proceedings of ACM SIGCOMM, pages 53–59. Aug. 1996.
7. P. Gustafsson and K. Sagonas. Native code compilation of Erlang’s bit syntax. In Proceed-

ings of ACM SIGPLAN Erlang Workshop, pages 6–15. ACM Press, Nov. 2002.
8. P. Gustafsson and K. Sagonas. Adaptive pattern matching on binary data. Technical Report,

Department of Information Technology, Uppsala University, Sweden, Dec. 2003.
9. L. Hyafil and R. L. Rivest. Constructing optimal binary decision tress is NP-complete. In-

formation Processing Letters, 5(1):15–17, May 1976.
10. F. Le Fessant and L. Maranget. Optimizing pattern matching. In Proceedings of the ACM

SIGPLAN International Conference on Functional programming, pages 26–37. Sept. 2001.
11. P. J. McCann and S. Chandra. Packet types: Abstract specification of network protocol

messages. In Proceedings of ACM SIGCOMM, pages 321–333. Aug./Sept. 2000.
12. P. Nyblom. The bit syntax - the released version. In Proceedings of the Sixth International

Erlang/OTP User Conference, Oct. 2000. Available at http://www.erlang.se/euc/00/.
13. K. Scott and N. Ramsey. When do match-compilation heuristics matter? Technical Report

CS-2000-13, Department of Computer Science, University of Virginia, May 2000.
14. R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching. SIAM Journal

of Computing, 24(6):1207–1234, Dec. 1995.
15. P. Wadler. Efficient compilation of pattern matching. In S. L. Peyton Jones, editor, The

Implementation of Functional Programming Languages, chapter 7. Prentice-Hall, 1987.
16. M. Wallace and C. Runciman. The bits between the lambdas: Binary data in a lazy functional

language. In Proceedings of ACM SIGPLAN ISMM, pages 107–117. ACM Press, Oct. 1998.
17. C. Wikström and T. Rogvall. Protocol programming in Erlang using binaries. In the Er-

lang/OTP User Conference, Oct. 1999. Available at http://www.erlang.se/euc/99/.

15

