
A Language for Specifying Type Contracts in Erlang
and its Interaction with Success Typings

Miguel Jiménez1 Tobias Lindahl1,2 Konstantinos Sagonas3,1

1 Department of Information Technology, Uppsala University, Sweden
2 Ericsson AB, Sweden

3 School of Electrical and Computer Engineering, National Technical University of Athens, Greece
migueljimg@gmail.com tobiasl@it.uu.se kostis@it.uu.se

Abstract
We propose a small extension of the ERLANG language that allows
programmers to specify contracts with type information at the
level of individual functions. Such contracts are optional and they
document the intended uses of functions. Contracts allow automatic
documentation tools such as Edoc to generate better documentation
and defect detection tools such as Dialyzer to detect more type
clashes. Since the Erlang/OTP system already contains components
which perform automatic type inference of success typings, we also
describe how contracts interact with success typings and can often
provide some key information to the inference process.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms Design, Documentation, Languages, Verification

Keywords Erlang, success typings, contracts

1. Introduction
For quite some time now, programs in ERLANG have been devel-
oped without any mention of types which describe their intended
use. With the advent of automatic documentation tools such as
Edoc many ERLANG programmers have discovered the usefulness
of types as documentation. However, while type annotations given
as comments are better than no annotations at all, they tend to rot as
they are not verified. In addition, the usefulness of the type anno-
tations is restricted to the programmer’s eyes, and without a stan-
dardized type language, tools for static analysis such as Dialyzer
cannot take advantage of the information.

In this work, we propose a contract language that can serve both
as a language for program documentation in the style of Edoc, and
as a guidance to tools such as Dialyzer and TypEr. The contracts
are often refinements of success typings, a soft typing framework
developed for expressing type information in dynamically typed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-675-2/07/0010. . . $5.00.

programming languages. Our contracts are designed for ease of
use and clarity, but also to provide some key functionality, such
as contract overloading and bounded parametric polymorphism,
which can provide analyses with more refined information.

The contract language is yet another step in the authors’ attempt
to exploit type information in ERLANG programs and raise the
type awareness of the ERLANG community. Earlier experiences
with Dialyzer and TypEr have shown that there is a lot of type
information already available in ERLANG code, but with the help of
the programmer, more type information can be explicitly available
both for the eyes of other programmers and for the benefit of type-
based static analysis tools.

The remainder of the paper is structured as follows. In Section 2
we recapitulate the main ideas behind success typings and motivate
why this is a useful basis for automatic type inference in dynami-
cally typed languages. The basic contract language is described in
Section 3; its interaction with success typings is described in Sec-
tion 4. Issues related to the handling of overloading and of type
variables are discussed in Section 5. In Section 6 some examples
are given, followed by related work and some concluding remarks.

2. Success Typings
Using type information in dynamically typed languages is often
called soft typing, a term coined by Cartwright and Fagan [1].
Soft typing encompasses various approaches, but commonly soft
type systems use a static type domain extended with some way
of expressing dynamic types, and the aim is typically to eliminate
dynamic type tests or to find type clashes in the code. Soft type
systems are by definition not allowed to reject programs, but they
can bring the attention of the user to places in the code where there
is a risk for a type clash.

If a soft type system reports all possible points in the code where
there is a risk of a type error, we say that the reports (or warnings)
are complete. If, on the other hand, the soft type system reports
only definite type clashes we call the warnings sound. With these
definitions, the warnings cannot be both sound and complete for a
practical programming language, since this is the same problem as
having a sound and complete type inference.

In dynamically typed languages type safety is a given as it is
guaranteed by dynamic type tests (i.e., by inspecting the type tag
of values during runtime). Type reconstruction can be done with
the help of available language constructs such as explicit type tests
and primitive operations with known type behavior. However, the
available information is often not enough to say whether there
will be a type clash or not at a given program point. A soft type
system that opts for complete warnings has no choice but to report



the program point as a possible type error, thus reporting a lot of
spurious warnings.

Our experience in developing the static analysis tool Dialyzer
(A Discrepancy Analyzer of ERLANG code [4, 8].) and interacting
with its user community, has taught us that soundness of warnings
is an important feature for such a tool from the usability point of
view. By allowing programmers to see the benefits from using a
type-based analysis with as little effort as possible, we can con-
vince them to put more effort into incrementally adding more type
information in the program. Without sound warnings, the benefit is
typically hidden among the numerous false positives.

In prior work we have defined success typings [6], a framework
for describing type information in dynamically typed programming
languages. The notion of success typings accurately captures the
dynamic type behavior of the ERLANG language and is the basis
for type analyses which emit warnings that are sound rather than
complete.

2.1 Basic idea
The key to giving sound warnings is determining when a program
construct will surely fail. In some primitive operations of the lan-
guage this is trivial and the corresponding type information can be
hard-coded. For example consider addition in ERLANG: adding an
integer to a list will definitely fail, but adding an integer to a float
will probably succeed.1 When dealing with user-defined functions
the problem of automatically capturing the success and failure be-
havior of functions is more complex.

Consider the ERLANG implementation2 of the Boolean and
function shown below.

and(true, true) -> true;
and(false, ) -> false;
and( , false) -> false.

The first clause matches if both the arguments are true, and the re-
maining clauses match if either of the arguments is false. Assum-
ing we have defined the Boolean type, bool(), as true | false,
we would expect a Hindley-Milner type inferencer to derive the
type

(bool(), bool()) →bool()

for this function. In the first function clause, this description is ob-
vious, and nothing in the following clauses contradicts it. We can
say for sure that if this function is applied with Booleans as argu-
ments, we will have no type clash and we will get a Boolean as
the return value. A static type checker can enforce this type sig-
nature by rejecting programs that contain calls to the and function
with non-Boolean arguments. A soft type system can give a warn-
ing based on this type signature whenever the arguments are not
Booleans, but in some cases these warnings will be spurious. For
example, the call

and(false, 3.14)

does not conform to the Hindley-Milner type, but will indeed eval-
uate to false without any type error.

In the work of Marlow and Wadler [7] a subtype domain is
used. They report having problems with the and function and their
inference finds the type

(any(), false) →bool()

where any() is the type that includes all ERLANG terms, and
false is the singleton type containing only the atom false. In

1 We write “probably succeed” because in ERLANG the addition will result
in a badarith exception if the result is bigger than the maximum value that
can be represented as a float.
2 The example is taken from Marlow and Wadler’s work on a subtype
system for ERLANG [7, Section 9.3].

Static Typing

Success Typing

Dynamic Typing

Figure 1. An illustration of function domains

this particular case, the odd type signature is a side effect of pattern
matching compilation, but it indicates a more general problem.
Inferred domains for a function might be too restrictive and might
not describe a function’s actual behavior. In particular, they do not
state when a function call will fail, but instead they are concerned
with how to restrict the arguments to avoid type clashes. If the
second argument in our example is restricted to false there will
never be a type clash, but arguably this restriction does not reflect
how the function can, and should, be used.

The inference of success typings takes another approach. In-
stead of restricting the domain to avoid type clashes, the inferred
domain must include all values for which a function application
can succeed, even if this means including values for which there
might be a type clash.

DEFINITION 1 (Success Typing). A success typing of a function f
is a type signature, (ᾱ) →β, such that whenever an application
f(p̄) reduces to a value v, then v ∈ β and p̄ ∈ ᾱ.

The key property is that the domain of a success typing expresses
for which arguments an application has a chance of succeeding,
with a guarantee of failure whenever the arguments are outside this
domain. In other words, success typings are sound for failure rather
than sound for type safety, a property already guaranteed by the
ERLANG language through dynamic type tests.

In Figure 1 there is an illustration of inclusion of function
domains in different frameworks. The dynamic typing domain is
the domain for which a function will evaluate without type clashes
in a dynamically typed language. This is in some sense the ideal
description of the function, since it is not restricted by the static
type system nor over-approximated due to analysis imprecision.
The static typing domain for the function will always be a subset
of the dynamic typing domain. If the static types have the principal
type property, the static typing domain will be as large as possible
and sometimes will coincide with the dynamic typing domain. In
general however this is not the case, and the area between the
two domains consists of the arguments that will be disallowed by
a static type checker, although the function call would evaluate
without a type clash. The success typing domain will always be
a superset of the dynamic typing domain. The ultimate aim of any
inference algorithm should be to make these domains coincide.

A formal description of an automatic inference algorithm for
success typings is given in [6], but basically the algorithm relies on
the fact that there is a trivial success typing for all functions, namely
the type signature that accepts any input and returns any value. For
example, (any()) →any() is a success typing for all functions of
arity one. The analysis then tries to limit the domain and range of
this signature until it can no longer do so without excluding values
for which the function could possibly succeed.

In the type domain we are currently employing, which consists
of type unions only, the and function has the success typing:

(any(), any()) →bool()



This type might seem unnecessarily general. However, first note
that it clearly is a success typing for the function. Secondly, note
that in the absence of information about the uses of the function we
cannot restrict any of function arguments in any way. Using a type
domain that is more expressive (e.g., with intersection or with de-
pendent types) we could possibly get a more precise description of
the function’s type, but can we find a better description without al-
tering the type domain? In many cases, we can answer this question
positively using the notion of refined success typings.

2.2 Refined success typings
In every program, there is a finite number of call sites for each func-
tion. Assume that the analysis has knowledge about all these call
sites, and also assume that the analysis can find that the function is
only called with inputs of some type(s). For example, suppose that
the analysis determines that our and function is only called with
Booleans. We can use this information to refine the success typing,
so that it reflects how the function is actually used in the program,
not only how it can be used. However, the definition of success typ-
ings does not allow for excluding valid inputs, so we need another
concept.

DEFINITION 2 (Refined Success Typing). Let f be a function with
success typing (ᾱ) →β. A refined success typing for f is a typing
of the form (ᾱ′) →β′ such that
1. ᾱ′ ⊆ ᾱ and β′ ⊆ β, and
2. for all p̄ ∈ ᾱ′ for which the application f(p̄) reduces to a value,

f(p̄) ∈ β′.

A refined success typing is a success typing with some addi-
tional constraints on the function domain. Note that there is noth-
ing in the definition that states where these constraints come from.
In [6] the success typings are refined by a dataflow analysis that
finds what domains a function is applied to. The result is function
descriptions that not only describe how a function could be used,
but also capture the actual uses of functions. The next logical step
is to let the programmer state how the function is supposed to be
used, something that fits nicely into the framework of refined suc-
cess typings.

3. A Contract Language
A contract is a way for the programmer to explicitly state the
intended uses of functions. In the general case, the success typing
of a function over-approximates the types of its intended uses and
it can be refined by taking information from the contracts into
account. The basic idea is to infer the types of a function by using
some inference algorithm for success typings, and then check if the
success typing is compatible with the contract. If the success typing
and the contract do not contradict each other in any way, a refined
success typing can be constructed based on both the information
in the contract and the inferred success typing. As we will see,
the resulting refined success typing can be more expressive than
the one we can infer with the algorithm for automatic inference of
(refined) success typings.

When encountering a function call, the types of the arguments
are checked against the contract. If a violation is found this is re-
ported, otherwise the contract is used to refine the type information
at the call site. By using this approach, we gain precision in the in-
ference, while preserving soundness of failure under the side condi-
tion that the user respects the contracts which have been specified.
The contract checking follows the same approach as the rest of the
inference with respect to soundness for failure, i.e., soundness for
contract violations. Only when a contract cannot possibly hold, a
contract violation is reported.

3.1 Basic syntax of contracts with types
Contracts in a module are given as compiler attributes. The basic
contract specification follows the syntax:

-spec(F/A::((a1, . . . , an) -> r)).

where F is a function name, A is its arity, a1, . . . , an is a possibly
empty sequence of type expressions for the function arguments and
r is the type expression for the function range.

The language for type expressions is an extension of the type
language defined and used by the TypEr tool [5] and is similar to
the language also used by Edoc. We briefly describe its syntax.

Type expressions are built from basic components which can be
partitioned into four main groups:

• The first group consists of type expressions denoting singleton
types. Examples of singleton types are: the atom true, the
integer 42, the empty list [], etc.

• The second group consists of a predefined set of type names
(e.g., atom(), integer(), float(), binary(), list(), tuple(),
pid(), port(), ref (), . . .) for all different kinds of ERLANG
terms. Integers get a special treatment and there exists a long
list of predefined subtypes of integers (e.g. byte(), char(),
pos integer(), non neg integer(), . . .) and a notation for in-
teger ranges of the form (L..U) where L and U are integers
representing the lower and upper bound of the range. Also, the
complex types often include type expressions as arguments, in
which case they contain these types in parentheses. For exam-
ple, list(integer()) denotes the type expression for lists con-
taining integers and for convenience this type expression can
also be written as [integer()]. A special notation for tuples is
also available; for example, {atom(), integer()} denotes pairs
(i.e., 2-tuples) whose first element is an atom and whose second
element is an integer.

• The third group consists of types that are defined and given
names by the user. A type name is an atom followed by closed
parentheses. The parentheses are needed in order to distinguish
a type from a plain ERLANG atom, since the type language also
accepts atoms as singleton types. Example declarations can be
found below.

• Finally, a type variable is also a type expression. Type vari-
ables are used for parametric polymorphism as described in
Section 3.4 below. We have closely followed the ERLANG con-
vention for variables and thus type variables always begin with
a capital letter.

The union of any two type expressions t1 and t2 (written as t1 | t2)
is also a type expression. An example of such an expression is
0|42 which denotes the type consisting of only the integers 0
and 42. Naturally, unions can appear anywhere where a type ex-
pression can be used. For example, an heterogeneous list consist-
ing of integers and atoms can be defined with the type expression
[atom()|integer()].

Using type expressions containing unions, the user can define
new types such as the ones below:

-type(fruit() :: apple | orange | banana).
-type(my list() :: [atom() | integer()]).

Both examples define names, namely fruit and my list,
which exist only as aliases for more complex type expressions.

The union of all terms, whether built-in or user-defined, is the
universal type which is denoted by any(). Also, the type language
allows for the empty set of terms, denoted by the type none().
This type is typically not used by the user but is needed for the type
lattice and in order to denote the presence of a type error.



The type system also includes funs, i.e., functions with either a
known or an unknown number of arguments. If the number of ar-
guments is known then these arguments are denoted as (t1, . . . , tn)
where t1, . . . , tn are their respective type expressions. If the num-
ber of arguments is unknown but it is known that the fun’s return
type is described by the type expression t, then the fun is denoted
by (. . .) → t. Note that t can also be the type expression any().

For user convenience and for documentation purposes, the nota-
tion for records has been extended to allow for record fields which
contain type information. In other words, it is possible for users to
define a record such as:

-record(employee, {name::atom(), age::integer()}).

and they can subsequently refer to this record in some type dec-
laration, in another record definition, or in a contract specification
using the notation #employee{}, which in turn is syntactic sugar
for the type expression {employee, atom(), integer()}.3

Type aliases can also be used in record definitions and vice
versa. The only restriction is that the aliases or records to be used
must have been previously declared.

Optionally, the user can also give names to type expressions
using the Edoc notation:

Name :: T

Currently, these names are only used for documentation purposes,
i.e., they are treated as comments and are essentially ignored. How-
ever, they can serve as a link between the language we describe in
this paper and the one used by the Edoc tool which automatically
creates documentation based on information given in comments.
Quite often, the information supplied to Edoc is similar and con-
tains names for variables and function arguments.

Table 1 shows a list of commonly used predefined shorthands.

Shorthand Type Alias for
any()

bool() (’true’ | ’false’)
number() (integer() | float())
byte() (0..255)
non neg integer() (0..)
pos integer() (1..)
identifier() (pid() | port() | ref())
[atom()] list(atom())
function() (. . .) → any()
string() [char()]
nonempty string() [char(), ...]

Table 1. Common type aliases

3.2 Some simple example uses
Consider the factorial function shown below:

fac(0) -> 1;
fac(N) -> N * fac(N-1).

Its inferred success typing is:

(non neg integer()) →pos integer()

Suppose we are interested in restricting calls to this function to only
small input arguments. Using contracts, a programmer can express
this intention by writing the following specification:

-spec(fac/1 :: ((byte()) -> pos integer())).

3 As a matter of fact, this particular language extension is orthogonal to the
subject of this paper and is already present in Erlang/OTP R11B-4.

If we want to add further comments for documentation purposes,
we can use variable names. A variant of the later contract that will
have the same result is:

-spec(fac/1 :: ((N :: byte()) -> pos integer())).

Consider again the and function described in Section 2.1.
We can specify a more suitable type signature that accepts only
booleans as types for the arguments and range using the contract:

-spec(and/2 :: ((bool(), bool()) -> bool())).

The nth/2 function of the lists module returns the element
which is contained in the nth position of a list. Suppose that we
are using a local copy of this function in a module but we want it
to work only for lists of atoms. This is expressed in the following
contract.
-spec(nth/2 :: ((integer(),[atom()]) -> atom())).

Assuming that we also know that the length of the lists will never
be over a certain threshold, for example, 10. We can modify the
contract to help analyses find better information.

-spec(nth/2 :: ((1..10,[atom()]) -> atom())).

3.3 Contract overloading
In ERLANG, functions can be defined to operate on different types
in an overloaded fashion. In order to capture this behavior of func-
tions, contracts are allowed to be overloaded as well. For exam-
ple, consider the function inc/1 in Figure 2. Its two clauses are
written to operate on integers and floats respectively, adding one
to the input argument.4 The success typing for this function is
(number()) →number(), losing the information about overload-
ing and abstracting to a supertype. By specifying an overloaded
contract we can capture the behavior in a better way. Overloaded
contracts are specified as a sequence of simple contracts separated
by semicolons. In Figure 2 an overloaded contract is specified to
allow calls to inc/1 with float() or integer() to return float() or
integer() respectively.

-spec(inc/1 :: ((integer()) -> integer());
((float()) -> float())).

inc(X) when is integer(X) ->
X + 1;

inc(X) when is float(X) ->
X + 1.0.

Figure 2. An overloaded increment function

3.4 Polymorphism and bounded quantification
Another feature of the contract language is support for parametric
polymorphism. As an example where this can be useful, consider
the higher order library function lists:map/2, which applies a
function to each element of a given list and returns the resulting
list. The success typing for this function is:

(((any()) →any()), [any()]) → [any()]

We can connect the types of the function with those of the lists by
specifying the polymorphic contract:

-spec(map/2 :: ((((A) -> B), [A]) -> [B])).

where A and B are universally quantified variables. The interpre-
tation of the type variables will be further discussed in Section 5.

4 Note that this could have been written in one clause since addition is
overloaded in ERLANG.



-spec(tag list/2 :: ((X, [Y ]) -> [{X, Y }])
when is subtype(X, atom())).

tag list(X, [H|T]) when is atom(X) ->
[{X, H}|tag list(X, T)];

tag list( , []) ->
[].

Figure 3. A contract with bounded quantification

In addition, type variables can be bounded by adding a guard-
like constraint to the contract. The function in Figure 3 takes an
atom and a list and tags each element of the list with the atom. The
contract uses the is subtype constraint to specify an upper bound
on the first argument, while keeping the information about what
atom is used as a tag (if this is known at the call site).

These type variable constraints can also be combined with con-
tract overloading. The scope of a type variable is a simple contract.
For example, in this specification:

-spec(foo/2 :: ((atom(), X) -> X)
when is subtype(X, integer()));

((string(), X) -> X)
when is subtype(X, float()))).

type variables in each simple contract are different. The first one is
bounded by integers; the second one is bounded by floats.

4. Interaction with Success Typings
Contracts can be used to guide the refinement of success typings.
By taking the user-defined contracts into account in the type infer-
ence, the type information can be significantly improved. However,
care must be taken so that wrongly specified contracts do not make
the information less precise or even false. In general, the contracts
cannot be soundly verified, since this is the same problem as hav-
ing a sound type checker for a dynamically typed language such as
ERLANG. However, contracts allow for a more refined analysis and
for reporting interface violations when these occur.

A contract can be interpreted as a set of constraints on the be-
havior of a function and more specifically on the set of terms which
are allowed for arguments and returned as result. These type con-
straints can be both over-approximating and constraining depend-
ing on the purpose of the contract. Sometimes it may be convenient
to abstract for readability, and other times the programmer may
want to specify how a function should be used rather than how it
can be used. The success typing for the function is an upper bound
of the actual behavior, so a contract cannot be allowed to be in con-
tradiction with the success typing. During type inference, both the
contracts and the success typings can be used in conjunction to gain
as much precision as possible.

Assume that a function has the success typing Sigt and the
contract signature Sigc. Success typings are covariant in the do-
main and range (e.g, the most general success typing of arity one
is (any()) →any()), which means that the subtype relation, ⊆, on
success typings is defined covariantly.5 Furthermore, the infimum
(greatest lower bound) operator, ∩, is also covariant on function
types.6 When comparing the contract and the success typing we

5 (α) →β ⊆ (α′) →β′ ⇐⇒ α ⊆ α′ ∧ β ⊆ β′

6 (α) →β ∩ (α′) →β′

=



(α ∩ α′) →β ∩ β′ when α ∩ α′, β ∩ β′ 6= none()
none() otherwise

have the following four situations:
Sigc ∩ Sigt = Sigc (1)
Sigc ∩ Sigt = Sigt (2)
Sigc ∩ Sigt 6= none() (3)
Sigc ∩ Sigt = none() (4)

In case (1) the contract is constraining the function more than the
success typing, but does not contradict it. In case (2) the contract
is over-approximating the behavior of the function, which is not
in conflict with the success typing. In both cases, the resulting
refined success typing is simply the infimum of the contract and
the success typing since we are interested in the most specific
description of the function. In case (3) the contract and the success
typing are incomparable, but there is a common description of the
type behavior, so this case can be viewed as a combination of
the two former cases. In some aspects the contract is refining the
success typing and in some aspects it is making it more general.
The refined success typing is once again the infimum of the contract
and the success typing. In case (4) there is no common description
of the type behavior of the function. This is clearly a violation of
the contract and the user should be warned about it. Following the
principle of soundness for failure, this is also the only case where
the user will be warned about the contract validation.

A contract must be respected not only by the function for which
it is declared, but also by the users (call sites) of the function.
As explained in more detail in [6], the success typing domain is
used as an upper bound of the argument types of a call site. Since
the contract domain is also an upper bound, the constraints must
be used in conjunction, effectively forming the infimum of the
two domains. The ranges are treated analogously. If we find that
the arguments cannot satisfy the constraints we consider this as
a contract violation at the call site. Likewise, if the caller fails
to handle the return type, the contract violation is at the call site,
even though it might have been the contract that was malformed. In
general, if a contract cannot be disproved at the declaration point,
it is trusted and all violations are considered to be the fault of the
callers.

5. Issues with Overloading and Type Variables
Adding the expressibility of overloading and bounded quantifica-
tion to the contract language does not cause any considerable over-
head in the analysis. One might fear that expressibility adds com-
plexity, and this is of course true in the general case, but since the
contracts in this work are verified on a best-effort basis, where con-
tracts are only rejected if they are proved to be false, the extra work
is reasonably small. However, there are some issues.

When faced with an overloaded contract, the type inference
gains most information when the domains of the different parts
of the contract are disjoint. However, if this is not the case, or if
the information about the applied arguments is not specific enough
to choose which overloaded part to consider, the overloaded con-
tract is collapsed by taking the union of the separate clauses. For
example, the overloaded contract in Figure 2 can be collapsed to
(number()) →number() if the analysis cannot find which of the
clauses is used at a certain call site.

Note that collapsing an overloaded contract corresponds to
widening a success typing. The definition of success typings only
limits the domain and range by saying that all valid inputs must be
included in the domain and all possible outputs must be included
in the range, so widening the domain and range is always allowed.
By the same reasoning, we can always allow collapsing overloaded
contracts.

Determining how to instantiate type variables in our type do-
main is problematic, and we do not claim to have found the best



solution. However, while any analysis that takes the type variables
into account must take care not to surprise the user with unpre-
dicted results, it is clearly useful to have the possibility to express
parametric polymorphism in the contracts. For documentation pur-
poses if not for anything else.

The main problem with instantiation is that our type domain
includes constructor-free unions. Since types can be part of any
union (that can also include any singleton type) we have an infinite
number of types that any ERLANG term can belong to. For example,
the integer 42 belongs the type integer(), but also to the union
types integer()|atom(), number()|tuple() and 42|77.

The solution we have chosen is to view the contracts as pre-
and postconditions, i.e., we interpret the intention of the user as
“Whatever I give in the arguments should also be true for the return
of the function.”. If there is only one type variable in the domain
of a contract, the type variable is instantiated to the argument
type of the call site. For example, the standard library function
lists:reverse/1 can be described with the contract

-spec(reverse/1 :: (([X]) -> [X])).

If there is a call with the argument type [atom()], X is instantiated
to atom() and the return type is [atom()].

When there is more than one type variable in the arguments of
a contract it is less clear what to instantiate the type variable to. For
example, if the contract for some function foo/2 is

-spec(foo/2 :: ((X, X) -> X)).

there is no bound on what types the variable X can represent.
Essentially, the contract gives us little more information than
the success typing (any(), any()) →any(). However, under the
pre- and postcondition interpretation, X can be instantiated to
the least upper bound of the arguments represented by the type
variable. For example, if there is a call site with the argument
types integer() and atom(), the type variable X is instantiated to
integer()|atom(), which then also is the return type.

We are exploring different ways of limiting the types that a type
variable can be instantiated to, such as disallowing type unions
completely, only allow unions if they are declared as a named type,
or explicitly enumerating the types that a variable can be instanti-
ated to. In general, such limitations can go into the contracts as side
conditions in the same manner as the is subtype constraint. We
choose not to elaborate further at this point, and leave this as future
work.

6. Two Examples
A polymorphic contract A commonly used function from the
lists module in the standard library is append/2, whose intended
use is for list concatenation. For efficiency reasons this function is
actually implemented in C, but we can consider that its implemen-
tation is as follows:

append([], L) -> L;
append([H1|L1], L2) ->
[H1|append(L1,L2)].

The problem is that, with an implementation such as the one above,
the function’s inferred success typing is: ([any()], any()) →any().
Indeed, in a language like ERLANG and with a type system
like the one we are using, this success typing accurately cap-
tures the operational behavior of this function. Notice that the
call append([],3.14), however unintended, will match the first
clause of the function and succeed with 3.14 as result. We can
make this function reflect its intended uses by defining a suitable
contract for it:

-spec(append/2 :: (([T],[T]) -> [T])).

This will constraint the uses of this function and will flag calls like
append([],3.14) or even append([1,2],[3|4]) as violating
the contract. Notice however, that the append([1,2],[a,b]) call
will not be flagged as violating the contract since it is actually
possible for T to be the type expression atom() | integer().
A contract for a higher-order function Another commonly used
function from the lists module is the function all/2. It is defined
as follows:
all(Pred, [Hd|Tail]) ->

case Pred(Hd) of
true -> all(Pred, Tail);
false -> false

end;
all(Pred, []) when is function(Pred, 1) -> true.

The success typing which is inferred for this function is:
((any()) →any(), possibly improper list(any())) →bool()

At first sight this success typing might seem a bit counter-intuitive,
and possibly even incorrect. We will argue that from the point of
view of capturing all possible uses of this function, no matter how
unintended they might be, it is actually the best we can do.

First of all, we infer that the function can accept a possibly
improper list in its second argument because the function is short-
circuiting. Indeed, the call all(fun is atom/1, [42|gazonk])
will evaluate without any type clash and will return false. The
reason for the inferred type of the first argument is more subtle.
Note that the case expression in the first clause can succeed not
only when the Pred function returns the atoms true or false,
but also for a function that returns these two atoms and even more,
provided of course it happens to return true (and possibly false)
for the elements of the list in all’s second argument. Since there
is no upper limit in what the Pred function can return, the only
reasonable type that we can infer for its range is any().7

Using a polymorphic contract like the one below we can restrict
the uses of the lists:all/2 function to those which programmers
used to statically typed languages would find most natural:
-spec(all/2 :: (((T) -> bool(), [T]) -> bool())).

Of course, more liberal contracts are also possible. Two different
ones are shown below.
-spec(all/2 :: ((( ) -> bool(), list()) -> bool())).
-spec(all/2 :: (((T) -> bool(),

possibly improper list(T )) -> bool())).

7. Related Work
Obviously, this is not the first time that programmer supplied type
specifications are used in a programming language. In fact, most
programming languages come with ways of declaring the types of
functions’ arguments and result.

In statically typed languages, declared types are typically ver-
ified by the compiler. Some languages such as ML take type in-
ference to the extreme. In principle, type annotations are not re-
quired; in practice they are often needed for overloaded built-in
functions and for user-defined data types. When automatic type in-
ference exceeds the decidability ceiling, user-supplied type anno-
tations are typically required. Such type systems are often referred
to as guided by partial type inference. Many statically typed lan-
guages, both functional such as Haskell and logic-based such as
Mercury [10], often require type annotations for exported functions
(or predicates) in order to make partial type inference both modular
and considerably faster.

7 Of course, the same type information for the function’s range is also
derivable from the second clause of the lists:all/2 function.



In dynamically typed languages, optional type declarations or
annotations have also been used before. Since the early 1980’s,
various implementations of the functional programming languages
Lisp (e.g., most implementations of Common Lisp [11]) and later
of Scheme (e.g., Bigloo Scheme [9]) have used optional type dec-
larations, mainly as an aid for the compiler to generate faster code
by avoiding dynamic type checks. Some of these systems have also
used optional type annotations in conjunction with type checking
in order to catch and explain programming errors. Notable among
them are the MrSpidey and MrFlow components of the DrScheme
system [2].

In logic programming programming languages such as Prolog,
programmer-supplied annotations and assertions which often ex-
tend beyond the realm of what can be verified by a static analyzer
have also been used. The assertion language of the Ciao Prolog
system [3] shares many common characteristics with our work.
Namely that assertions are integrated in the language in the form
of an optional type system and that they interact with a type infer-
ence algorithm based on abstract interpretation which always over-
approximates the dynamic typing domain of functions (predicates).
However, unlike Ciao’s assertion language, our type contracts are
higher-order and allow for explicit side conditions in the form of
guards.

Last but not least, our work is related to work in the context
of the ERLANG language, interacts and integrates well with it.
Existing tools such as Dialyzer [4], TypEr [5], and Edoc will be
able to directly benefit from the language extension we described
in this paper.

8. Concluding Remarks and Future Work
We have described a language for specifying user-defined types in
ERLANG and for annotating functions with contracts containing
type information. These contracts document the intended uses of
functions, but they can also be combined with success typings and
help defect detection tools such as Dialyzer to detect more type
clashes and interface violations in ERLANG programs. We have
presented some simple examples of possible contracts for com-
monly used functions and described issues related to annotating
libraries with such contract information.

The language we have described in this paper is already imple-
mented in a development version of Erlang/OTP R12. For its actual
use, the next step is to annotate standard libraries with contract in-
formation, a tedious and occasionally not totally straightforward
job. Doing so, might possibly reveal cases for which the contract
language is not expressive enough and needs to be extended, but
we strongly believe that the basic ingredients and machinery are
the ones we have described in this paper.

Eventually, it is up to the user community to decide whether
contracts containing type information is a good idea in a language
such as ERLANG or not. But we have good reasons to believe that
our proposal will not remain unexplored or just a paper design.

Acknowledgments
Since July 2006, the Ph.D. studies and the research of the second
author have been supported by Ericsson and the industrial graduate
school SAVE-IT (established by a grant from the KK Foundation).
The research of the third author has been supported in part by a
grant from the Swedish Research Council (Vetenskapsrådet).

References
[1] R. Cartwright and M. Fagan. Soft typing. In Proceedings of

the SIGPLAN Conference on Programming Language Design and
Implementation, pages 278–292. ACM Press, 1991.

[2] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. DrScheme: A programming environ-
ment for Scheme. Journal of Functional Programming, 12(2):159–
182, Mar. 2002.

[3] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garcı́a.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the Ciao system preprocessor). Sci.
Comput. Programming, 58(1-2):115–140, 2005.

[4] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story.
In C. Wei-Ngan, editor, Programming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS’04), volume
3302 of LNCS, pages 91–106. Springer, Nov. 2004.

[5] T. Lindahl and K. Sagonas. Typer: a type annotator of erlang code.
In Proceedings of the 2005 ACM SIGPLAN Erlang Workshop, pages
17–25, New York, NY, USA, 2005. ACM Press.

[6] T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, pages 167–178,
New York, NY, USA, 2006. ACM Press.

[7] S. Marlow and P. Wadler. A practical subtyping system for Erlang.
In Proceedings of the ACM SIGPLAN International Conference on
Functional Programming, pages 136–149. ACM Press, June 1997.

[8] K. Sagonas. Experience from developing the Dialyzer: A static
analysis tool detecting defects in Erlang applications. In ACM
SIGPLAN Workshop on the Evaluation of Defect Detection Tools
(Bugs’05), June 2005.

[9] M. Serrano. Bigloo: A practical Scheme compiler, May 2007. User
manual for version 3.0a.

[10] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm
of Mercury, an efficient purely declarative logic programming
language. Journal of Logic Programming, 26(1–3):17–64, Oct./Dec.
1996.

[11] G. L. Steele. Common Lisp: The Language. Digital Press, 2nd
edition, 1990.


