
Experience from Developing the Dialyzer:
A Static Analysis Tool Detecting Defects in Erlang Applications

Konstantinos Sagonas
Department of Information Technology

Uppsala University, Sweden
kostis@it.uu.se

Abstract
We describe some of our experiences from developing the Dialyzer
defect detection tool and overseeing its use in large-scalecom-
mercial applications of the telecommunications industry written in
Erlang. In particular, we mention design choices that in ouropin-
ion have contributed to Dialyzer’s acceptance in its user commu-
nity, things that have so far worked quite well in its setting, the
occasional few that have not, and the lessons we learned fromin-
teracting with a wide, and often quite diverse, variety of users.

1. Introduction
Programmers occasionally make mistakes, even functional pro-
grammers do. This latter species is by choice immune to some
of the more typical kinds of software defects such as buffer over-
runs or accessing memory which has been freed, but cannot escape
many other kinds of programming errors, even the more mundane
ones such as simple typos. To catch some of these errors earlyin
the development phase, many functional programmers preferusing
statically typed languages such as ML or Haskell. These languages
impose a static type discipline on programs and report obvious type
violations during compilation. Static typing is not a panacea and
does have some drawbacks. First of all, the errors that are caught
are limited by the power of the currently employed type system; for
example, none of the employed type systems statically catches di-
vision by zero errors or using a negative integer as an array index.
Another drawback is that static typing often imposes quite strin-
gent rules on what is considered a type-correct program (forexam-
ple, type systems often require that each variable has a typewhich
can be uniquely determined by constructors) and forces a program
development model with a fair amount of constraints (e.g., ML re-
quires that the module structure of an application is hierarchical and
that there are no calls to functions with unknown type signatures).

Mainly due to reasons such as those described above, some
programmers feel more at ease practicing a different religion. They
adopt a morelaissez-fairestyle of programming and choose to
program in dynamically typed functional languages, like Lisp or
Scheme, instead. Erlang [1] is such a language. In fact, it isnot
only dynamically typed but it also extends pattern matchingby
allowing type guards in function heads and in case statements. It
is also a concurrent language which is used by large companies
in the telecommunications industry to develop large-scale(several
hundred thousand lines of code) commercial applications.

The Erlang/OTP development environment Since defect detec-
tion tools are only additional weapons in the war against software
bugs, we briefly describe the surroundings of our tool. The de-
velopment environment of the Erlang/OTP system from Ericsson1

1 OTP stands for Open Telecom Platform; seewww.erlang.org.

strongly encourages rapid prototyping and performing unittesting
early on in the development cycle. Like many functional language
implementations, the Erlang/OTP system comes with an interac-
tive shell where Erlang modules can be loaded and the functions in
them can easily be tested on an individual basis by simply issuing
calls to them. If an exception occurs at any point, it is caught and
presented to the user together with a stack trace which showsthe
sequence of calls leading to the exception. Many errors are elimi-
nated in this way. Of course, testing of multi-thousand (andoften
million) LOC commercial applications such as e.g. the software of
telecom switches is not limited to unit testing to catch exceptions
but is much more thorough and systematic; for one such example
see [7]. However, testing, no matter how thorough, cannot ofcourse
detect all software defects. Tools that complement testing, such as
static analyzers, have their place in software developmentregard-
less of language. Erlang is no exception to this.

2. Dialyzer: A brief overview
The Dialyzer [5] is a lightweight static analysis tool that identifies
some software defects such as obvious type errors, unreachable
code, redundant tests, virtual machine bytecode which is unsafe,
etc. in single Erlang modules or entire applications. Because not all
of defects identified by Dialyzer are software bugs, we thereafter
collectively refer to them as codediscrepancies.2

Dialyzer starts its analysis either from Erlang source codeor
from the virtual machine bytecode that the Erlang/OTP compiler
has produced and reports to its user the functions where the discrep-
ancies occur and an indication of what each discrepancy is about.

Characteristics Notable characteristics of Dialyzer are:

• Currently Dialyzer isa push-button technology and completely
automatic. In particular it accepts Erlang code “as is” and does
not require any annotations from the user, it is very easy to
customize, and supports various modes of operation (GUI vs.
command-line, module-local vs. application-global analysis,
using analyses of different power, focusing on certain types of
discrepancies only, etc.)

• Dialyzer is acompletedefect detector — though of course not
guaranteed to find all errors — in the sense that it does not
report any false positives; more on this below.

• Its basic analysis is typicallyquite fast. On a 2GHz Pentium 4
laptop it “dialyzes” about 800 lines of Erlang code per second.

Basic functionality explained using an example The simplest
way of using Dialyzer is via the command line. The command:

dialyzer --src -r dir

2 DIALYZER stands for DIscrepancy AnaLYZer of ERlang programs.

will find, recursively, all.erl Erlang source files underdir and
will collectively analyze them for discrepancies. (The--src option
is needed because, for historical reasons, analysis startsfrom virtual
machine bytecode by default. The command with the--src option
omitted, will analyze all.beam bytecode files underdir.)

We illustrate some of the kinds of discrepancies that Dialyzer is
capable of identifying by the following, quite factitious,example.
Assume that we are analyzing a bunch of modules, among them
m1 andm2, and thatm2 contains a functionbar (denotedm2:bar)
called by functionfoo in modulem1. Because Dialyzer constructs
the inter-modular function dependency graph, functionm2:bar
will be analyzed first. In doing so, let us assume that type inference
determines that functionm2:bar, when not throwing an exception,
returns a result of the following type:

’gazonk’ | {’ok’, 0 | 42 | ’aaa’ | [{’ok’, }]}

i.e., its result is either the atom’gazonk’ or a pair (i.e., a 2-tuple)
whose first element is the atom’ok’ and its second element is
either the integer0, or the integer42, or the atom’aaa’, or a
list of pairs whose first element is the atom’ok’. (The use of an
underscore in the second element denotes the universal typeany.)

First of all, note that this is a type which will not be derivedby
the inferencers that statically typed language commonly employ.
Type inferencers like those of e.g. ML would typically collapse the
integers0 and42 to the built-ininteger type and would not allow
mixing primitive types such as integers and atoms without having
them wrapped in appropriate constructors. More importantly, they
would never derive an unconstrained type (such as the typeany) at
some position.

So, how come Dialyzer’s type inferencer comes up with theany
type for the second element of pairs in the list? This can happen for
various reasons:

• The most common reason is that the source code of function
m2:bar does not contain enough information to determine the
type of the second element of these pairs.3 It may indeed be
the case that the function is polymorphic in this position, or
more likely that this position is not constrained by information
derived by or supplied to the analysis. The latter can happenif
the second element of these pairs is manipulated by a function
in some other modulem3 that Dialyzer knows nothing about
becausem3 was not included in the analysis. (Type analyzers
for statically typed languages would never tolerate this situation
and simply give up here.)

• The analysis has decided to over-approximate, throughwiden-
ing, the inferred type. This can happen either to ensure termina-
tion or for performance reasons.

Given the return type form2:bar shown above, when analyzing the
code of functionm1:foo — shown with numbered discrepancies as
Program 1 — Dialyzer will report the following:

1. The call to the built-in functionlist to atom, if reached, will
raise a runtime exception since it is called with an argument
which is an atom rather than a list. (The programmer is ob-
viously confused here; for example, perhaps the intention was
to use the functionatom to list instead.) In a similar man-
ner, type clashes in calling other analyzed functions whichare
not necessarily language built-ins (e.g.m2:bar) will be identi-
fied. This is the kind of type errors that any static type analyzer
would also be able to detect.

2. The case clause guarded byis integer(Num), Num < 0will
never succeed because its guard will never evaluate to true.The
complete case clause is thus redundant. This is something that
most static type analyzers would not be able to catch, for rea-

3 Erlang programs contain no type declarations or any explicit type information.

Program 1 Code snippet which is full of discrepancies.
-module(m1).

.

.

.
foo(. . .) ->

case (m2:bar(. . .) = Bar) of
Atom when is atom(Atom) ->

. . ., List = list to atom(Atom) 1, . . .;

{’ok’, 42} ->
{’answer’, 42};

{’ok’, Num} when is integer(Num), Num < 0 2 ->

{’error’, "Negative integer - not handled yet"};

{’ok’, [H|T] = List} when size(List) 3 > 1 ->

. . .;

{’ok’, [Bar|T]} 5 ->

. . .;

{’EXIT’, R} 4 ->

io:format("Caught exception; reason: ∼p∼n", [R])
end, % end of the case statement

.

.

.

sons explained above. Strictly, this is not an error but having
redundant code like that scattered in the program is a strong
indication for programmer confusion — programmers rarely
fancy writing redundant code; see also [8]. Our experience is
that such discrepancies quite often indicate places where bugs
may creep, or may be the remains of obsolete interfaces; per-
haps some time agom2:bar was returning pairs with negative
integers in their second element but not anymore. Such discrep-
ancies indicate code that can be eliminated, which often simpli-
fies the interface between functions. Note that in this case all the
callers ofm1:foo would also have to handle the 2-tuple where
the first element is’error’ besides’answer’. In any case, re-
porting to the user that this case clause will never succeed is a
true statement prompting the user for some action. In our opin-
ion, it cannot be considered a false positive; it is not a side-effect
of inaccuracy in the analysis due to e.g. over-approximation or
path-insensitivity.

3. The guardsize(List) will fail since its argument is a list and
in Erlang thesize function only accepts tuples and binaries as
its argument, not lists. (The corresponding function for lists is
called length and this is a common programming mistake.)
The problem here is that this defect will remain undetected
at runtime because, for good reasons, all exceptions in guard
contexts are intercepted and silenced; the semantics ofwhen
guards in Erlang dictates this. Testing has therefore very little
chance of discovering this error. (The only method is to find out
that the. . . code in the body of the case clause never executes).

4. The case clause with pattern{’EXIT’, R} will never match.
This may seem obvious given the return type ofm2:bar, but
it indicates another common Erlang programming error. The
programmer probably intended to handle exceptions here, but
forgot to protect the call tom2:bar with a catch construct;
i.e., write the case statement as:

case catch m2:bar(. . .) of

which would then match the 2-tuple{’EXIT’, R} in the case
whenm2:bar threw an exception. (Catch-based exceptions in
Erlang are wrapped in a 2-tuple whose first element is the atom
’EXIT’ and the second element is a symbolic representation of
the reason, which typically includes a detailed stack trace.)

5. This one is subtle. The patternP = {’ok’, [Bar|T]} is actu-
ally type-correct, but the pattern matching of the term returned
by m2:bar and assigned to the variableBar will never match
with the patternP , with Bar being a sub-term of it. We are not
aware of any type checker that would catch this error.

On the other hand, notice that Dialyzer willnot warn that the case
statement has no catch-all clause (similar to C’sdefault) or that
the {’ok’, 0} return fromm2:bar is not handled. This is done
so as to minimize irrelevant ‘noise’ from the tool. In this respect,
Dialyzer differs from tools such aslint [4].

As mentioned, the example code we just presented is factitious,
albeit only slightly so. Dialyzer has yet to find a single function
that contains all these discrepancies in its code at the sametime,
but all of them, even 5, are examples of discrepancies that Dialyzer
actually found in well-tested, commonly-used code of commercial
products. Besides these, Dialyzer is also capable of identifying
some other software defects in Erlang programs (e.g., possibly
unsafe bytecode generated by older versions of the Erlang/OTP
compiler and misuses of certain language constructs), but their
illustration is beyond the scope of this short experience paper.

Dialyzer is of course not guaranteed to report all software de-
fects — not even all type errors — that an Erlang application might
contain. In fact, because Dialyzer’s analysis is not path-sensitive,
Dialyzer currently suppresses all discrepancies that might be due
to losing information when joining the analysis results from differ-
ent paths. This is in contrast to other defect detection tools that do
report false positives due to inaccuracies or heuristics inanalyses
they employ.

Dialyzer comes with an extensive set of options that allow its
user to focus on certain types of discrepancies only and employ
analyses of varying precision vs. time complexity trade-offs. It also
comes with a graphical user interface in which the user is able
to inspect the information that led to the identification of some
discrepancy of interest.

For more up-to-date information, see also Dialyzer’s homepage:
www.it.uu.se/research/group/hipe/dialyzer/

3. Dialyzer’s usage so far
Even before its first public release, Dialyzer was applied torela-
tively large code bases, both by us and more commonly by Erlang
application developers. We have been working closely with devel-
opers of the AXD301 and GPRS4 projects at Ericsson, and with a
T-Mobile team in the U.K. which also uses Erlang for some of its
product development. An early account of the effectivenessof an
internal and significantly less powerful version of the toolappears
in [5].

The first releases of Dialyzer, versions 1.0.*, featured analysis
starting from virtual machine bytecode only and the tool only had
a GUI mode. We were somewhat (positively) surprised to receive
numerous user requests to develop a command-line version of
the tool so that Dialyzer becomes more easily integrated to the
purelymake-based build environment of some projects.5 Once this
happened, we even received extensions to the tool’s functionality
contributed by users that made it into the next release. For example,
the code that supports the-r (add files recursively) option was

4 GPRS: General Packet Radio Service.
5 We thought that when academic projects gotreal users, it was supposed to be the
other way around: the users would demand a GUI! More seriously, this is somewhat
contrary to experience reported in literature. For example[2] reports that a significant
portion of the effort is spent in explaining defects in a user-friendly way (presumably
aided by a GUI). This probably does tell something about the habits of the Erlang
programmer community, which is mostly Unix-centered, but we will not try to analyze
it further.

a user contribution; before that, users were forced to manually
specify all files and directories to include in the analysis.

At the time of this writing, some of the code bases analyzed
by Dialyzer are open-source community programs (e.g., the code
of the Wings 3D subdivision graphics modeler,6 of the Yaws web
server,7 and of theesdl graphical user interface library8). However,
the majority of Dialyzer’s uses are large commercial applications
from the telecommunications domain. Among them is the code
base of the AXD301 ATM switch consisting of about 2,000,000
lines of Erlang code, where by now Dialyzer has identified a signif-
icant number (many hundreds) of software defects that have gone
unnoticed after years of extensive testing. It is also continuously
being used in the Erlang/OTP R10 (release 10) system to elimi-
nate numerous bugs that previous releases contained in someof its
standard libraries. We also know that Dialyzer is being usedon the
code of some of Nortel’s products, but we do not have any further
information on it.

At least in the commercial projects, Dialyzer is typically run as
part of a centralized (often nightly) build. Perhaps because of this,
many Dialyzer users typically complain that Dialyzer’s identifica-
tion of discrepancies is not as clear and concise as the messages
they are used to getting from the Erlang/OTP compiler. Although
it is indeed the case that currently there is plenty of room for im-
provement in Dialyzer’s presentation of the identified discrepan-
cies, it is clear that for many of the discrepancies simple one-line
explanations of the form"line 42: unused variable X" will
never be possible. Some of the discrepancies identified are com-
plex, involve interactions of functions from various modules, and it
is not always clear how to assign blame. As a simple example, note
discrepancy 4 of Program 1: Dialyzer will currently complain that:

The clause matching involving ’EXIT’ will never match;
argument is of type ’ok’

while the culprit is probably a missingcatch construct after the
case. As a more involved example, for discrepancy 2, Dialyzer will
report that the guard will always fail. But perhaps functionm2:bar
should return negative integers in this tuple position after all.9

Finding why inter-modular type inference determines thatm2:bar
only returns the numbers0 and42 in that tuple position might not
be at all trivial — especially to users who are not familiar with type
systems.

4. Experiences and lessons learned
Requests for better explanations of identified discrepancies aside,
Dialyzer has been extremely successful. It has managed to identify
a significant number of software defects that have remained unde-
tected after a long period of extensive testing. For example, because
of the high level of reliability required from telecom switches, the
developers of AXD301, a team consisting of about 200 people,has
over a period of more than eight years spent a considerable per-
centage of their effort on testing. Still Dialyzer managed to identify
many discrepancies and often serious bugs. As another example,
certain bugs in Erlang/OTP standard libraries managed to survive
over many releases of the system, despite being in commonly used
modules of the system. Although this may sound a bit contradic-
tory, it has a simple explanation. Many of the bugs were in error-
handling code or code paths of the library modules which werenot
executed frequently enough.

6 Seewww.wings3d.com/.
7 Yaws: Yet Another Web Server; seeyaws.hyber.org/.
8 Erlang OpenGL/SDL API and utilities; seesourceforge.net/projects/esdl.
9 Worse yet, there might even be a comment in its code to the effect that m2:bar
possibly returns a negative integer. Some programmers currently trust comments more
than output from static analyzers... but we are working on slowly changing this!

remote dirty select(Tab, [{HeadPat, , }] = Spec, [H|T]) when tuple(HeadPat), size(HeadPat) > 2, H =< size(Spec) ->

. . . % code for the body of this clause
remote dirty select(. . .) ->

.

.

. % code for this and other clauses below handling select queries with general specifications

Figure 1. Code from themnesia database with a guard that will always fail making the body ofthe first clause unreachable.

Observations Some qualitative observations can be made:

• The vast majority of (at least non-trivial) defects identified by
Dialyzer are due to the interaction between multiple functions;
a significant number of them span across module boundaries.
This is mainly due to the fact that Erlang is great for testing
functions on an individual basis (or in small sets), but currently
provides little support for specifying and ensuring properuse of
functions in other modules.

• Probably due to the reason described above, we did not observe
the usual inverse correlation between the age of some piece
of code and the number of discrepancies in it, at least not di-
rectly. The problem is that callers of some function may be
significantly older than the callee and as the callee’s interface
evolves, the callers possibly remain unchanged. Having redun-
dant clauses handling return values that were perhaps returned
long ago but not anymore, is an extremely common discrep-
ancy. As mentioned, such code is typically harmless but often
desperately in need for cleanups. Doing so, simplifies the code
where the discrepancy occurs and exposes opportunities forfur-
ther simplifications elsewhere, often significant ones.

• Even in dynamically typed languages such as Erlang, the code
that is frequently executed does not have type errors. As a result,
Dialyzer tends to find most discrepancies off the commonly ex-
ecuted paths. Commonly executed paths are often reasonably
well-tested and most discrepancies have already been elimi-
nated. On the other hand, exception- or error-handling code,
code that handles timeouts in concurrent programs, etc. does
not always have this property.

• Quite often, fixing even simple discrepancies in some particular
piece of code exposes more serious ones in code which lies in
close proximity to the code which is fixed.

Most of these observations are not very surprising and in line with
those of other researchers in the area.

Myths On the other hand, our experience so far has made us
seriously doubt the validity of the following common beliefs:

1. Software defects identified by a static analysis tool are shal-
low. Occasionally one might see such a statement, especially in
comparisons between static analysis and model checking tech-
niques; see e.g. [3]. It is of course very hard to dispute sucha
statement, as its validity depends on what one considers as a
“shallow” defect, but we will try to do so anyway.

Figure 1 shows a small code segment from the code of
Mnesia [6], a database management system distributed as part
of Erlang/OTP. It also shows an actual discrepancy identified
by Dialyzer, which is now fixed. On the surface, the indi-
cated discrepancy is indeed shallow; a simple misuse of a li-
brary predicate (usingsize on a list rather thanlength).
Viewed from this prism, there is indeed nothing “deep” here:
the programmer made a silly mistake. Because the function
remote dirty select is quite commonly used, what is sur-
prising in this case is that this mistake managed to remain un-
noticed over many Erlang/OTP releases. The subtlety of the
problem was actually in the other clauses for the function. This
bug was not identified because this clause was there for opti-

mization purposes (in order to handle the common case of a
single-element specification list fast). The subsequent clauses
also provided the functionality of the first clause, but using
a more general (handling specification lists of any size) and
thus more expensive mechanism. It is very difficult to identify
such performance-related software defects by means of (even
exhaustive) testing. It is not clear to us that such softwarede-
fects, for which the correctness criterion cannot be specified us-
ing a simple formula whose validity can be checked by model-
checking techniques, are of the “shallow” kind.

2. Software defects, once identified, are soon fixed.Coming from
academia, one is a bit shocked to discover that the “real world”
is somehow different. Fixing bugs, no matter how serious, is
not always a developer’s top-priority, because program devel-
opment in the real world follows a different model than that
of open-source projects managed by small teams of individu-
als. Software evolution in big commercial projects goes hand-
in-hand with filling bug reports, sending them to the developer
who is responsible for the maintainance of the piece of code
containing the bug, caring about backwards compatibility even
when the functionality is crippled, and often having to invest
a non-trivial amount of effort in order to modify or extend ex-
isting regression test suites, which are typically not maintained
by programmers but by a separate testing team. (Our experi-
ence here is actually in line with that of other researchers;see
e.g. [2, 3].)

In fact, we even seriously doubt that an automatic classifi-
cation of the seriousness of defects would help here. As a con-
crete example, we reported 18 discrepancies that Dialyzer iden-
tified in some library of Erlang/OTP to the library’s maintainer,
which incidentally was not the original author. Most of them
were fixed pretty soon, but one in particular — which was the
most serious — was not. In fact, it remained unfixed for quite
some time. The reason for this was that it would involve seri-
ous redesign of the code and this might significantly change the
behaviour of the library.

3. Only programs written in low-level languages such as C se-
riously benefit from defect detection tools.Not many serious
developers believe this statement anyway, but often one of the
arguments used in favour of high-level languages is that these
languages avoid common programmer errors. Although this is
a very true statement in some contexts (for example, one does
not have the possibility to free memory once, let alone twice, in
a garbage-collected language), it often fails to point out the fact
that any language, no matter how high a level of abstraction
it offers, has silly pitfalls and traps for developers, and these
are often directly connected, and difficult to separate from, the
language’s strengths. We hold that software defect detection
tools, especially lightweight ones, have their place in sofware
development independently of the programming environment
and language which is employed.

Final remarks Dialyzer is a static analysis tool identifying dis-
crepancies — out of which some of them are serious bugs — in
Erlang applications. We believe that the following, perhaps unique
characteristics, have played a crucial role in Dialyzer’s acceptance
by its user community:

• The tool is extremely lightweight and requires absolutely no
code changes or user-supplied annotations in order to be useful.

• The tool has so far tried its best to keep down the level of ‘noise’
which it generates, often at the expense of failing to reportac-
tual bugs. For the first versions of Dialyzer, one desired feature
was to never issue a warning that could be perceived as mislead-
ing or be such that the user would find it extremely difficult to
interpret. For example, we noticed that when analyzing virtual
machine bytecode which has been generated using aggressive
inlining, it would probably be difficult for naı̈ve users to in-
terpret the discrepancies. The approach we took was to simply
suppress all discrepancies found in inline-compiled bytecode.

Although some might no doubt find this approach a bit extreme,
we felt it was important for Dialyzer to succeed in gaining the
developers’ trust and be integrated in a non-disruptive wayin the
development process (i.e., without requiring any methodological
changes from the users). Of course, this is only step number one.
Once the developers’ attitude and expectation level has been raised
sufficiently, we intend to provide options that lift some of these
restrictions.

Acknowledgments
Dialyzer’s implementation would not have been possible without
Tobias Lindahl. Thanks also go to all Dialyzer’s users for useful
contributions, feedback, thought-provoking requests forextensions
of its functionality, and often working code for these changes.

The research of the author has been supported in part by grant
#621-2003-3442 from the Swedish Research Council and by the
Vinnova ASTEC (Advanced Software Technology) competence
center with matching funds by Ericsson AB and T-Mobile U.K.

References
[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams.Concurrent

Programming in Erlang. Prentice Hall Europe, Herfordshire, Great
Britain, second edition, 1996.

[2] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors.Software – Practice and Experience,
30(7):775–802, June 2000.

[3] D. Engler and M. Musuvathi. Static analysis versus software model
checking for bug finding. In B. Steffen and G. Levi, editors,
Verification, Model Checking, and Abstract Interpretation. Proceedings
of the 5th International Conference, volume 2937 ofLNCS, pages 191–
210. Springer, Jan. 2004.

[4] S. C. Johnson. Lint, a C program checker. Technical report, Computer
Science Technical Report 65, Bell Laboratories, Murray Hill, NJ, Dec.
1977.

[5] T. Lindahl and K. Sagonas. Detecting software defects intelecom
applications through lightweight static analysis: A war story. In C. Wei-
Ngan, editor,Programming Languages and Systems: Proceedings of
the Second Asian Symposium (APLAS’04), volume 3302 ofLNCS,
pages 91–106. Springer, Nov. 2004.

[6] H. Mattsson, H. Nilsson, and C. Wikström. Mnesia - a distributed
robust DBMS for telecommunications applications. In G. Gupta,
editor,Practical Applications of Declarative Languages: Proceedings
of the PADL’1999 Symposium, volume 1551 ofLNCS, pages 152–163,
Berlin, Germany, Jan. 1999. Springer.

[7] U. Wiger, G. Ask, and K. Boortz. World-class product certification
using Erlang.SIGPLAN Notices, 37(12):25–34, Dec. 2002.

[8] Y. Xie and D. Engler. Using redundancies to find errors.IEEE Trans.
Software Eng., 29(10):915–928, Oct. 2003.

