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A b s t r a c t  

We present a semantics for an imperative programming language, Lunsen, with constructs 
for concurrency and communication. The semantics is given through a translation into CCS. We 
have implemented this translation within the framework of the Concurrency Workbench, which 
is a tool for analysis of finite-state systems in CCS. The point of the translational semantics is 
that by imposing restrictions on Lunsen so that the semantics of a program is finite-state, we can 
analyze Lunsen programs automatically using the Concurrency Workbench. As an illustration 
we include an analysis of a mutual exclusion algorithm. 

1 I n t r o d u c t i o n  

Concurrent programs often exhibit complex behaviors, and it is therefore important to develop 
methods and tools for analyzing them rigorously. Many implementations have been developed for 
automatic analysis of concurrent programs [CPS89, BdSV88, CES86, RRSV87, GLZ89]. Most of 
these tools are designed for simple models of programs, e.g. finite-state transition systems [CPS89, 
BdSV88, GLZ89]. However, many concurrent algorithms are naturally formulated in some imperative 
programming language with constructs for concurrency. In order to analyze a program using the tools 
just mentioned, the program must first be translated manually into the appropriate model. 

In this paper, we present an automated translation of a concurrent programming language with im- 
perative features into CCS. The imperative language, Lunsen, is ALGOL-like and contains standard 
constructs for sequential programming - -  such as assignments, procedures, and arrays - -  as well as 
constructs for parallel execution of processes. Processes can communicate both via shared variables 
and through synchronous channels. 

The formal semantics of Lunsen is defined through a translation into CCS [Mil89]. We have imple- 
mented this translation within the framework of the the Concurrency Workbench (CWB). The point 
of our implementation is that CWB can be used to analyze Lunsen programs. CWB is a versatile 
tool which can automatically decide e.g. whether two concurrent systems are equivalent, or whether 
a system satisfies a property formulated in a modal logic. 

The main source of inspiration for the formal semantics of Lunsen is the semantics of a sequential 
language given by Robin Milner in Chapter 8 of his book [Mi189]. In order to make the programs 
effectively analyzable~ we impose restrictions on the language Lunsen so that the semantics of a 
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program will be finite-state: this means e.g. that the types of variables must contain only finitely 
many elements, and that procedures cannot call each other recursively in an arbitrary manner. 

There exist other automated tools for analyzing concurrent programs written in imperative lan- 
guages. EMC [CES86] is a tool for checking that a program satisfies a formula formulated in a 
branching time temporal logic. EMC has a preprocessor which accepts programs written in a sim- 
ple CSP-like language. Xesar [RRSV87] is a tool for checking similar properties for communication 
protocols defined in an extension of PASCAL with facilities for communication. Auto [BdSV88] and 
TAV [GLZ89] are tools for analysis of concurrent systems, which are related to the Concurrency 
Workbench. Other translations of imperative languages into CCS include a translation from Ada by 
Hennessy and Li [HL83], a translation from CSP by Astesiano and Zucca [AZS1], and a translation 
from NIL by Smolka and Strom [SS86]. 

In the next section, we define the syntax of Lunsen and give an informal semantics. The translation 
of Lunsen to CCS goes via an intermediate language, Typed CCS, which is an extension of CCS 
that is presented in Section 3. The translation itself is presented in Section 4. Section 5 discusses 
some optimizations to the translation, and Section 6 illustrates the analysis by an example: a mutual 
exclusion algorithm due to Peterson. Conclusions are found in Section 7. 

2 Lunsen:  S y n t a x  and  I n f o r m a l  S e m a n t i c s  

Lunsen is an imperative language belonging to the ALGOL family of strongly typed languages. 
This means that variables and imperative constructions such as while-loops are fundamenSal to the 
language. Lunsen does not include dynamic constructions such as pointers and creating of objects. 
We also place restrictions on procedure calling; these restrictions have the effect that Lunsen programs 
can be executed without a runtime stack or a heap area and ensure that programs in Lunsen will be 
finite-state. 

Lunsen also contains non-sequential primitives. Commands are executed in parallel with the par  
command and may communicate either synchronously by sending messages over ports or via shared 
variables. Furthermore, nondeterministic choice can be expressed in the language. 

Lunsen programs communicate with the outside world (the environment of programs) either by 
sending messages on ports that are visible to the environment or through global, or visible, variables 
of the program which can be accessed by the environment. 

The syntax for Lunsen programs is given in Table 1 using a dialect of BNF. Objects written inside 
slanted brackets ([]) are optional, and we let the I symbol denote alternatives (instead of grouping 
them on different lines). We presuppose a set of identifiers partitioned into constants ranged over 
by Ic, type identifiers ranged over by It, procedure identifiers ranged over by Ip, Lunsen variables 
ranged over by I~, array variables ranged over by I=, program identifiers ranged over by ls, and port 
identifiers ranged over by I,~. 

We will now give an informal description of the meaning of the Lunsen constructions. 

• Programs 

A program consists of a declaration section and a command which invokes the execution of the 
program. 

• Declarations 

Procedures, types, variables and ports are defined in a declaration section. The order between 
definitions is not significant. 

• Types 
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S::= 

D::= 

A::= 

G::= 

T::= 

E::= 

C::= 

P: := 

p rog ram Is; D C endprog;  

C 

t y p e  I~ = T; 
var  I~:[G] It = E; 
procedure  Ip[(I~:A I t , . . .  , I . :A I,)] D C endproc ;  
p o r t  Im :[visible] It; 
D D  

in J out  I inout  

read l wri te  readwri te  

{ I t , . . .  ,Ic} 
ordered  {It, . . , I t}  
a r r ay  l i t , . . .  ,It] of  It 
I t* . . .  *It 

I c 

Ia[E, . . . ,El 
(E,...,E) 
# I c  E 
if E ~ E [. . .  I E --+ E /e l se  E l  endif  
E = E  
E < E  
succ E 
pred  E 
no t  E I E a n d E I E o r E  

begin C end 
skip 
C ; C  
C par  C 
Iv := E 
Io[E . . . .  , E I : = E  
I , [ (E . . . . .  E)]  
if E --~ C }... I E --* C/e lse  e l  endif  
when P --~ C I . - . ]  P ~ C endwhen 
while E do C endwhile  
P 

T 

I,~ ! E  
Im ? Iv 

Program 

Empty declaration 
Type definition 
Variable declaration 
Procedure definition 
Port declaration 

Parameter usage 

Visibility of variables 

Enumerated type 
Ordered type 
Array type 
Tuple type 

Constant 
Variable 
Array expression 
Tuple expression 
Tuple access 
Deterministic choice 
Equality 
Less-than-or-equal 
Successor function 
Predecessor function 
Boolean functions 

Compound statement 
No action 
Sequencing 
Parallel composition 
Assignment 
Array assignment 
Procedure call 
Deterministic choice 
Port synchronization choice 
While loop 
Port command 

Invisible action 
Send value 
Receive value into variable 

Table 1: The syntax of Lunsen 
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The only standard type in the language is b o o l e a n ,  defining the constants t r u e  and false. 
New types can be defined by enumerating the constants of the type, or by forming array types 
or tuple types. For example, 

type int4 = {1,2,3,4}; 

defines a new type int4 and also the predicate = over that  type (e.g. 2 = 2). By adding the 
keyword o r d e r e d  before the enumerated set of constants, the relation < will also be defined on 
that  type as well as the functions succ (z )  (the successor function) and p r ed (x )  (the predecessor 
function) (in this case, applying succ  to 4 generates an error message). As an example of an 
array type, 

type arrint4 = array[int4] of boolean; 

defines an array type of four elements, assuming the previous definition of int4. Each element 
of such an array is capable of storing one of the values t r u e  or false. An example of a definition 
of a tuple type is 

type tup = int4 * int4; 

• Variables 

A variable is defined using the v a r  declaration. A variable must be supplied with an initial 
value when it is declared. An example: 

var a:int4 = 2; 

The  optional keywords r ead ,  w r i t e  and r e a d w r i t e  determine how and if the variable is visible 
to a potential  observer (user) of the program. If a variable is declared as read-ab le  the observer 
can inquire of the value of that  variable. If a variable is wr i te -ab le  the outside observer can 
modify the value of that  variable. The r e a d w r i t e  keyword combines the effects of r e a d  and 
wr i t e .  

Array variables are not full members of the language in that  we place some rc=trictions on 
their usage. They cannot be passed as parameters to procedures, cannot be communicated via 
ports, nor can they be assigned to as a single entity. It is of course possible to assign values to 
elements of array variables, for example, 

var a:arrint4 = {true, true, true, true}; 

a[1] := false 

• Ports 

Concurrent processes may use ports to synchronize their activities. A process sends a value on 
a port using the ! operator and receives values into variables using the ? operator. A process 
a t tempt ing communicat ion on a port will halt its execution until another process is also ready 
for communication.  As an example: 

port p:int4; 

var x:int4; 

p?x par p!2 par p!3 
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The three commands p?x, p ! 2, and p !3 represent three processes that  execute in parallel. Each 
process is suspended until  another process is able to communicate with it. Communication is 
binary. In an execution of the three commands, either the value 2 or the value 3 is assigned to 
the variable x. 

If a port is declared to be v is ib le ,  an observer of the program will be able to communicate 
with the program through that  port. Otherwise the port is only accessible within the program 
(and in the scope of the port declaration). 

• Procedures 

A procedure contains a declaration section and a command. A procedure accepts zero or 
more parameters, in parameters are used to supply values to the procedure, o u t  parameters 
communicate  results from the procedure back to the caller, i n o u t  parameters combine the 
effects of in and out .  

The  semantics for procedure calls is as follows. First  in and i n o u t  parameters are evaluated 
(call-by-value style) and temporary copies of o u t  and i n o u t  parameters are created. Then the 
command in the procedure body is executed. After the execution of the procedure body the 
values in the temporary i n o u t  and o u t  variables are copied back to the variables supplied in 
the actual procedure call command. 

In order to ensure that  Lunsen programs are finite-state, the following (syntactic) restrictions 
on admissible procedure calls are enforced: 

1. A parent  may always call its child. 

2. A child may never call its parent. 

3. A sibling may call another sibling as long as the call is made tail-recursively. 

4. A procedure may call itself as long as the call is made tail-recursively. 

Here tail-recursive means that  no command can occur after the call command in the calling 
procedure, i.e. after the end of the execution of the called procedure, the calling procedure 
does not have to be resumed. Furthermore we demand that  if an i n o u t  or o u t  variable occurs 
at position i in the enumerated list of i n o u t  and o u t  formal parameters to the procedure in 
which the tail-recursive call is made, then it should occur at the same place in the corresponding 
enumerated list of i n o u t  and o u t  actual parameters to the called procedure in the tail-recursive 
call. We also require that  these two enumerated lists have the same number of elements, i.e. no 
extra i n o u t  or o u t  parameters are allowed in the  formal parameter  list of the tail-recursively 
called procedure. To illustrate: 

procedure p; 
procedure pl; 

P; 
p2 

endproc; 

Illegal/P1 may not call its parent 
But may call its sibling tail-recursively 

procedure p2 ; 
p l ;  

p2 
endproc ; 

pl; pl 
endpro c; 

Illegal/p2 may not call its sibling non-tail-recursively 
But may call itself tail-recursively 

P may call pI (a child) non tail-recursively as well as tail-recursively 
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• Expressions 

An expression represents a value which can be passed as an in parameter to procedures and 
assigned to variables. 

The if expression evaluates its conditional expressions in sequential order. The value of the 
if  expression is the value of the expression corresponding to the first true boolean expression. 
If no boolean expression evaluates to true and there exists an else clause, the value of the 
if expression is the value of the else expression. Otherwise the if expression aborts. The 
projection function # I c  E will return the component number Ic of the tuple expression E. 
Tuple components are numbered consecutively starting from 1. 

• Commands 

Standard commands such as sequencing (;), assignment (:=) exists in Lunsen and have their 
usual meaning. Note that the execution of the assignment command is non-atomic: the evalu- 
ation of the right-hand side is separate from storing the result into the left-hand side. 

The if command is similar to the if expression. The execution of the when  command is sus- 
pended until one of its communication events can take place; then the corresponding command 
is executed. The ~" event will take place spontaneously, without having to wait for communica- 
tion with another process. Thus the when  command may introduce explicit non-determinism 
in a program. As an example: 

port synch:boolean; 

when 

tau -> p1 

I synch!true -> p2 

endwhen 

The execution of the when  command in the example can proceed in two ways: either through 
the spontaneous r event, in which case pl is executed, or by sending on the synch port, in which 
case p2 is executed; the last alternative requires that another process is ready to communicate 
on the synch port. 

The par  command creates two processes that execute in parallel. Given 

program Pvar; 

type int4 = ordered {1,2,3,4}; 

var v:int4; 

v := I ;  
v := succ(v) 

endprog; 

par v := succ(v) 

the value of v may become either 2 or 3, i.e. the execution of parallel commands is finely grained. 
This is due to the semantics of the assignment command, which is executed non-atomically. 

3 CCS and T y p e d  CCS 

Two versions of CCS (Calculus of Concurrent Systems) are used in this paper. The first one is 
the basic calculus. The second version is called TCCS (Typed CCS), and is closely related to the 
value-passing calculus in Chapter 2.8 of [Mil89]. TCCS extends basic CCS in that action prefixes are 
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D : : =  

T::= 

A::= 

E::= 

P: := 

K E where  D ; . . . ; D  

t y p e  t = T 
p o r t  p : t 

def K ~ : t =  A 

C , . . .  ~ C} 

orde red  {c , . . . ,  c} 
t *  . . . * t  

n i l  
K E  
P.A 
A + A  
AIA 
A\{p, . . .  ,p} 
A[p/p . . . . .  p/p] 
if  E then  A else A 

C 

V 

(E . . . . .  E) 
#c E 
E = E  
E < E  
n o t  E I E a n d  E I E o r  E 

T 

p!E 
p?~ 
p?=E 

TCCS program 

Type definition 
Port definition 
Agent definition 

Enumerated type 
Ordered enumerated type 
Tuple type 

The n i l  agent 
Agent identifier expression 
Prefixing 
Choice 
Parallel composition 
Restriction 
Relabeling 
If agent 

Constant 
Variable 
Tuple expression 
Tuple access 
Equality 
Less than or equal 

Boolean functions 

The r action 
Send value E on port p 
Receive any value on,port p 
Receive value E on port p 

Table 2: The syntax of TCCS 

explicitly parameterized on data  values. TCCS acts as an intermediary language in the translation 
from Lunsen to CCS. This enables us to separate the concerns of flow control in Lunsen from concerns 
related to typing and value-passing. 

We first briefly review basic CCS. Let A , B , . . .  range over agents, and let a, b , . . .  range over port 
names. The complementary port of a is denoted by n. Two agents can communicate if one of them 
has a port named a and the other a port named ~. We extend the set of port names with the silent 
action r to form the set of CCS actions. We let a range over the set of actions. The operators used 
in the basic calculus are: prefixing (a.A), choice (A + B),  parallel composition ( A I B ) ,  restriction 
(A\L)  on a set of ports L, and reiabeling (A[f]) where f is a function that  relabels the ports in A. 
As usual we write ~ = 1  Ai for A1 + "-" + Am. 

For TCCS we presuppose a set of types ranged over by t, a set of agent identifiers ranged over by 
K,  a set of port names ranged over by p, q, a set of TCCS variables ranged over by v, and a set of 
constant values ranged over by c. We write ~ for a (possibly empty) tuple of variables ( v l , . . . ,  vn) 
and similarly ~ for a tuple of constants. 

The syntax for TCCS is defined in Table 2 using the BNF dialect. There are two predefined types: 
b o o l e a n  with the two elements t r u e  and false,  and u n i t  with the only element 0. This element 
may be omit ted in expressions; for example p!.A is short for p!O.A. 
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A TCCS variable v is bound in the input prefix p?v.A; more generally p?9.A binds all variables in 9. 
Similarly an agent definition Kb : t~A  binds the variables ~ in A. We only consider TCCS programs 
which are well typed and where all variables occur bound. Thus, in a TCCS program each agent 
identifier, port name, TCCS variable, and constant value is associated with a unique type as given in 
a TCCS definition (the type of a variable is considered the same as the type of the port or identifier 
where it is bound). In the following we write typeof(X) for the type associated with such an object 
(or a tuple of such objects) X. We also write A[5/9] to mean the TCCS agent gained by substituting 
each free occurrence of vl by ci. 

The meaning of TCCS is defined by a function TInCt, which maps a TCCS construction C into basic 
CCS. In this definition we do not distinguish between a closed expression (an expression without 
variables) and the constant value it denotes when the operators "=", "and" etc. are given the 
obvious interpretations. We further assume that for each TCCS port p and constant c of the same 
type there is a basic CCS action pc. 

The first clause in the definition of ~-~ is: 

T~I( E where D1;. . .  ; D,~ = T[K E~ 

where the right hand side is to be interpreted with respect to the basic CCS agent identifier definitions 
introduced by D1, . . .  D= as follows. TCCS type definitions and TCCS port definitions do not result 
in any basic CCS identifier definitions. Each TCCS agent identifier definition K ~ : t~A  yields the 
set of CCS agent identifier definitions: K~T[A[~/fi]~ forall ~ of type t. 

The translation of a TCCS agent is defined in Table 3. Note in particular the determined input 
construct p?=E.A. This results in a TCCS agent which can only accept a particular value (as 
determined by E) on port p; such a construct turns out to be useful in defining the semantics of 
Lunsen arrays. 

A ~'[A] 

nil nil 

K E KB 

v.A v.T[A~ 

p? O.A ~ typeof (~)=typeof (v) p~.T~ A[e/ ~]~ 
p!E.A ~-~.q-~A~ 

p?=E.A pE.T~A~ 

A1 + A2 T~AI~ + T[A2] 

A1 ] A~ T~AI~ I T[A2~ 

A\L T[A~\(p¢ : p • L, c • typeof(p)} 

A[f] T[A~[I'] where if(Pc) = ](P)c 

if t rue then A1 else A2 T~A1]] 

if false then A1 else Az T[A2] 

Table 3: Translation of TCCS agents into CCS agents 

For example, "T~K(x : boolean)~fp?y.q!y.r?=x.nil~ yields the set of basic CCS agents identifier def- 
initions 

{ Kt~u~ a~ Pt .... qtru;.rt .... nil + p y ~ t , ~ . ~ . r ~ . n i l  
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4 A F o r m a l  S e m a n t i c s  for L u n s e n  

4 . 1  C o m b i n a t o r s  

When translating the Lunsen constructions into TCCS, we will use a number of basic combinators 
similar to the ones defined in Milner's book [Mil89]. The combinator Before will be used to model 
sequential composition of two agents; the first agent must signal that  it has finished "running" by 
using the combinator Done before the other agent can start "running". The Par combinator is used 
to model two processes running in parallel. 

Each expression will return its value by using the combinator Result(value). Such a value can be 
bound to a TCCS variable in a process agent through the combinator Into, as in expr Into(x) (ag): 
the TCCS variable x will here be bound to the value of expr in the TCCS process agent ag. The 
combinator Into_I is a variant of Into, allowing a list of variables to be bound to a list of expressions 
in an agent body. We use the syntax hd :: tail for a list consisting of the head hd and tall list tI. [] 
will denote the empty  list. If we are certain that a list consists of a fixed number of elements, say el 
and e2, this is writ ten as [el, e~]. The combinators are defined in Table 4. 

Done = done!.nil 

P Before Q = (P[b/done]lb?.Q)\{b } 
P Par Q = (P[dl/done]lQ[d2/done]l dl?.d2?.Done)\{dl,d2} 

Result(v) = resuIt!v.nil 

E Into(x) (A) = (E[i/result]]i?x.A)\{i} 

[] Into_l([]) (A) 

E :: RestE Into_l(x :: Restx) (A) 

= A 

= E Into(x) (RestE Into_l(Restx) (A)) 

Table 4: The basic combinators 

4 . 2  V a r i a b l e s  

A non-array variable v of type T is translated to the TCCS agent 

Regv(y : T)~putv?(x).Reg,(x) + get~](y).Reg,(y) 

A value can be stored in the variable v by sending the new value on the port put,. Reading of values 
from v is accomplished by receiving the current value from the port get,. An array variable v of type 
a r r a y  [T~d~=] of  T, to,~ will be represented as the family of agents 

VieT{nd~= : Reg._{(y : T~to~)~get.!(i,y).Reg._{(y) + ~ put~?=(i,x).Reg._{(x) 

We will use store(a) to denote the type of elements in an array a (T~to~ in the example), and index(a) 
to denote the index type of the array (T~d~ in the example).  So, reading the array element a[2] is 
accomplished in the TCCS agent 

E geto?=(2, z) .B 
z6store(a) 

When we present the formal semantics of Lunsen below, we will for simplicity assume that  no variables 
are of an array type (except in explicit array access expressions and commands). Each rule involving 
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registers should thus be extended with a case where the variable is an array, in which case a set of 
register agents Reg,_i should be used instead of the single agent Reg,.  

4.3  A c c e s s  and  R e s t r i c t i o n  sor t s  

An access sort ACC for a declaration in Lunsen is the set of TCCS port names by which it it possible 
for other Lunsen declarations and commands to interact with that  declaration. For a variable v, the 
access sort will consist of put, and get,. 

The restriction sort 7~AC for an declaration contains the port names of that declaration which should 
not be accessible to an external observer of the program. It will be identical to .ACC except when 
visible variables or ports occur in a program. The function T~.AC is presented in Table 5. 

~.AC(var I~:It = E;) = {putz~, getx~} 
~AC(var l~:read I~ = E;) = {putx.} 

~AC(var I~:write It = E;) = {get~.} 
~AC(var I~:readwrlte It = E;) = 

7~AC(procedure Ip[(I~:A It,...,I~:A It)] D C endproc;) = 
~AC(port I~:visible It;) = O 

~AC(port I~:/,;) = {I,n} 
7~AC(D~ D2) = ~Ag(D~)UT~AC(D~ ) 

Table 5: The function 7~.AC for computing restriction sorts 

4.4  T h e  t r a n s l a t i o n  

We define the translation £~] from commands in Lunsen to TCCS agents in separate tables for 
declarations, expressions, and commands. Constructions not generating any TCCS "code" are not 
listed in the tables. These for example include definitions of types. First we show the translation of 
the p r o g r a m  statement:  

£ ~ p r o g r a m  I~; D C endprog ;~  = Is, where I ~ ( £ ~ D ~  [(£:~C] Before nil))\7~JtCv 

Translation of declarations is listed in Table 6. In the rule for procedure translation (1), x~ . . . .  , x~ 
match the subset of formal parameters to the procedure (I11,.. i . ,  I ~ )  that  are in  or i n o u t  parame- 
ters. Similarly, x ~ , . . . ,  x ° match the subset of formal parameters to the procedure ( I °1 , . . .  , I,°~) that  
are o u t  or i n o u t  parameters.  The intuit ion behind the translation of a procedure is that  the in and 
i n o u t  actual parameter  values x~ , . . . ,  x~ are supplied as parameters to the agent identifier Ip in the 
translat ion of the call command.  Temporary copies of all parameters are made and the actual values 
of the parameters are stored in the registers Regz~,. When the execution of the translated command 
£~C] in the procedure has finished, the values of the temporary registers and returned as a TCCS 
tuple expression through the use of the Result combinator. 

The translation of Lunsen expressions into TCCS agents is shown in Table 7 and translation of 
commands in Table 8. 

In the translation of a non-tail-recursive procedure call (2) in Table 8, we assume that in and 
i n o u t  parameters  are denoted by E~ through E~ and the o u t  and i n o u t  parameters by E~ through 
E °. Note that  the actual parameters corresponding to o u t  and i n o u t  formal parameters must be 
variables (I~). In the translation we evaluate the in expressions, continue with the execution of the 
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translated procedure lp which will as previously described end its execution by returning the values 
of the "out" parameters. We then store back those values in the variables (Iv) passed as actual 
parameters to the procedure call. 

The translation of the tail-recursive call (3) is more straightforward because we do not have to store 
back the results of the procedure call into the actual parameters. 

Our semantics for scoping of procedures and procedure calling follow the informal rules presented in 
2. Since the informal rules are nonproblematic we omit a formal specification here. Likewise, we do 
not present the function which determines if a procedure call is a tail-recursive one. 

We will examplify the translation rules by informally discussing the result of applying them to the 
Pvar program in Section 2, in the introduction to Lunsen Commands. The resulting CCS specification 
will consist of two agents in parallel, the first representing the variable v in the form of a register 
agent, the second the execution flow in the program. The agent representing the execution flow starts 
by assigning 1 to v, then splits into two new agents composed by the CCS parallel operator. Each of 
these two agents will perform two atomic actions: first compute the value sue t (v) ,  and then assign 
that value to v. Since the translation of the assignment command consists of two atomic actions, the 
resulting value assigned to v can be either 2 or 3: 

• if the computation of succ(v) by the two agents are performed directly after each other, the 
result will be 2 

• if one of these agents gets to both compute sue t (v)  and then store that value in v before the 
other agent computes succ(v) ,  the result will be 3 

After both agents have performed their assignment to v, the execution of the program terminates. 

5 I m p l e m e n t a t i o n  d e t a i l s  

As mentioned in the introduction, one aim is to use the output from the Lunsen compiler in analyses 
performed by the Concurrency Workbench. This means that care has to be taken to ensure that 
all generated agents are finite-state. In this section we briefly comment on some problems in this 
respect. 

5.1 Problems 

The basic Combinators from Section 4.1 may introduce agents which are syntactically non-finite- 
state, although they are equivalent with finite state agents. 

For example, the TCCS agent definition Aa~p.Done Before A is translated into the CSS agent A = 
(p.o-d-o-~-~.nil[b/done]lb.A)\{b }. The expansion of this agent using the expansion law yields the agent 
definition A = p.(nil[b/done]lA)\{b }. The CWB could here reduce the agent expression to p.A using a 
rule equating (nil[~]lX)\Y to X\Y .  Instead, CWB chooses the strategy of continuing to expand the 
(nil[b/done]lA)\{b} expression, resulting in the expression p.(nil[b/done][p.(nil[b/done][A)\{b})\{b}. 
Obviously, the expansion process will never terminate. 

To avoid these problems the basic combinators are implemented in the following way: 

• P Before Q is implemented as the agent obtained by substituting each occurrence of done!.nil 
in P with Q. 

• E Into(x) (A) is implemented as: the agent obtained by substituting each occurrence of a 
resuIt!v.nil expression in E with A{v/x} (A where we substitute v for x). 
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/:[D1 D2] = /:~DI]IL~D2] 

/ : [ 'car  I~:[G] It = E;]  = Regi~(/:[E]] ) where E is a constant expression 

/ : [ p r o c e d u r e  I p ( I , , : A  l t , , . . .  , l~nlA Its); D C e n d p r o e ; ]  = ni l  

We define the TCCS agent Ip((xi~,. i de, • ., ~.))  = ( . ~ , . , ( - )  I .. • I Reg..(-).. I 

Temp. copies of parms. 
, p - t L , ! x l .  t '  ' '  . . . .  pu I . . . z  5 . / : [C]  Before 

In(out) parms. 
g~tL,?x~ . . . . .  get~. ?@Resu l t ( (x [  . . . . .  x~)) l  

(in)Out p~rms. 
c~ n]) ,,.~cc~ U .4co,., U . . . U ~ c c  , , .  

(i) 

T a b l e  6: T r a n s l a t i o n  of  d e c l a r a t i o n s  ( D )  

/:~xo] 

cU~]  

/:[I~[E . . . . . .  E.]I  

/:I(E . . . . . .  E . )]  

/:[#io E] 

l:~if Eb~ -+ E~ ] . . . I  Ebn ~ E .  endlf~ 

/ : [ i f  Ebx --* E t  I . . -  [ Eb~ ~ E .  else E endif ]  

/:[E~ = E2] 

/ : [suee E] 

/ :ffpred E]  

/ : [not  E] 

/:IN1 a n d  E2~ 

/:[E~ or E2] 

= Result(I~) 

= ge t i?x .Resul t (x  ) 

= [/:frEd . . . . .  / : lE-]l  Into J([  . . . . . . . . .  1) 
( ~ e  . . . . .  (I=)(getI.'?'=(( . . . . . . . . .  ), y).Result(y))) 

= [/:[El] . . . . .  /:~E.]] Into_t([ . . . . . . .  ~.]) Result(( . . . . . . . . .  )) 

= / : l E ] ] I n t o ( x ) ( # I c x )  

= /:[Ebl] Into(x1) ( if  xl t h e n  /:[[E1] else . . .  
e l s e / : [ E b . ]  Into(z . )  ( i f x .  t h e n / : [ E . ]  else nil)) 

= /:IEb,] Into(x1) (ifxx t h e n  /:[[Ex] els . . . .  
else /:[Ebn] Into(x.)  ( if  x .  t h e n / : [ E . ]  e l s e / : [E ] ) )  

= [ / : [ E d ,  z[E~]] Into J @  . . . .  ])(R~su~t( . . . . .  )) 

= [/:[EI], ~:lEvi] l . t o J @  . . . .  ])(nesult(xl <_ x~)) 

= /:EEl 1.to(~)(Result(su~e(x))) 

= /:[E] Into(x) (Result(pred(x)))  

= ZIE] Into(z) (Result(not(z))) 

= /:[Ea] Into(xa) ( if  xa = fa lse  t h e n  Result(false) e lse / : [E2] )  

= ~:[Eli] Into(xa) (if  xl = t r u e  t h e n  Result(true) else/ :~E2])  

T a b l e  7: T r a n s l a t i o n  of  e x p r e s s i o n s  ( E )  
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£I[begin C end l 

g[sklp] 

£[C~ ; C21 

£[C par  C l 

£[[I~[E~ . . . . .  E.]  := E J/  

Non tail-recursive procedure call (2): 
£UA(E . . . . . .  E. ) ] l  

Tail recursive procedure call (3): 
r4Ip[(E1 . . . . .  E.)]I  

£lifEbx --* C1 [... [ Eb, "-* Cn endli~ 

£[if Ebl ~ 01 I... I Eb, ~ C, else C endlf~ 

£[when  P1 ~ Cl [, . .  I P" --+ C~ endwhen~ 

£[[while E do C endwhile l 

z[~l  

= t[c] 

= Done 

= ~ [ c , ]  Before ~[C,]  

= £[C,] Par £[C21 

= £ [ E l l n t o ( ~ ) ( p " t I o ! X . n o n e )  

= [C[Ejl, c [ z d  . . . . .  C[E,,E ~ntoJ([~s,x . . . . . . . .  3) 
(pUtJa!((X . . . . . . . .  ), xl).Done) 

= [~[E~l . . . . .  L[E'.~] IntoJ([x', . . . . . .  ~]) 
Ip(x~ . . . . .  x '.) Into(y[ . . . . .  y,~ ) (put z~ !y ~ . . . . .  put E~ " !y~',.Done) 

= [Z:IEl]l . . . . .  Z:IE',,l] IntoJ(fxl . . . .  ,, x~,]) (IKx~ . . . . . .  ")) 

= LIEbl ] Into(zl) (ifxl then £[C,~ else ... 
else C[Zb.[] Into(In) (if x .  then  £[C.  l else nil)) 

= £[Ebll  Into(xO (if zl then  £[Cl l  e l s e . . .  
else £[Eb. l  Into(z.)  (if x .  t hen  f I E .  l else £1[C])) 

= £[P~l Before £[C, l + . . . +  £ [ P - I  Before £I[C.]] 

= W, where W~ '  £[E]] Into(x) 
(ifx then  £[C~ Before W else Done) 

= £[E~ Into(x) ( l . !x .Done)  

= r.Done 

= Im?x.puti!x~Done 

T a b l e  8: T r a n s l a t i o n  of c o m m a n d s  ( C  a n d  P )  
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• A Par B is defined as pl!.p2!pl?.p~?.Done, where Pl and P2 are ports unique to the program. 
Two new agents are also added, A'~pl?.A Before p~!.A' and B'~p2?.B Before p2!.B'. 

An example: assuming A~a.A + done!.nil and B~b.B, then A Before B is equivalent to A' where 
A' is a new agent: A'~a.A + b.B. 

The compiler furthermore "lifts up" all parallel compositions (and restrictions) into the main program 
agent (the one named in the program statement). In this process unique names for restricted objects 
are created. Thus the main program agent will appear: 

Spec~(Agl I.. .  [Ag,)\ { /h , . . . ,  p,} 

and the TCCS agents Agi will contain only + (choice),. (prefixing) and agent identifiers (K's). 

5.2 Optimizations 

We also do some further optimizations for the sake of efficiency of the analysis of the generated CCS 
agents in the CWB: 

• Lunsen variables which can be accessed by at most one concurrent process do not need associ- 
ated Register agents (cf. Section 4.2). As an example, 

procedure p; 

var v:boolean = false; 

q!v 

endproc; 

The variable v in the example can only be used in the procedure p and since the procedure 
contains no par  command, the variable cannot be accessed by multiple processes concurrently. 
Therefore we need not actually use a register agent for v but may encode it directly in the 
TCCS agent corresponding to the translation of procedure p. 

• Some useful algebraic manipulations: simplify A + A into A, A + nil  into A and X.r.Y into 
X.Y.  

6 A n  E x a m p l e  

In this section we will present an example of a distributed algorithm which is normally, and perhaps 
most clearly, formulated in an imperative language. Our example is an algorithm for mutual exclusion 
due to Peterson [PS85]. The algorithm will be defined in Lunsen and formally verified with the 
Concurrency Workbench. In the following we assume the reader to have some familiarity with the 
modal logic supported by the Workbench. An introduction to this logic and its use for verifying 
mutual exclusion algorithms can be found in a recent article by Walker [Wa189]; we will use the same 
algorithm and correctness criteria. 

First we will formulate Peterson's mutual exclusion algorithm in Lunsen, assuming two concurrent 
processes competing to enter their critical sections. Then we will minimize the resulting CCS agents 
w.r.t, observation equivalence using the Workbench. Finally we will determine whether the algorithm 
meets the safety and liveness demands. This will be done by checking if the minimized agents satisfy a 
pair of propositions formulated in HML (Hennessy-Milner logic). These checks are done automatically 
by the Workbench. 
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In the formulation of the algorithm in Lunsen, we will use port communications to signal that a 
process requests to enter, enters and leaves its critical section (req!i, enter!i and exit!i, where i is 
the name of one of the two concurrent processes). These are the only actions which will be visible to 
an observer of the program. Peterson's algorithm as formulated in Lunsen is presented in Figure 1. 
The state graph of the Lunsen program after translation into basic CCS, and minimization w.r.t. 
observation equivalence by the Concurrency Workbench is displayed in Figure 2. 

program Peterson; 

type int2 = {i, 2}; 

type b_arr = array[inti] of boolean; 

var b:b_arr = {false, false}; 

var k:inti; 

-- Ports visible to an observer 

port enter :visible inti; 

port exit :visible inti; 

port req :visible inti; 

procedure p(i:in inti, j:in inti); 

while true do 

b[i] := true; req!i; 

k := j ;  
whi le  ( b [ j ]  and (k = j ) )  do s k i p  endwhi le ;  
enter!i; -- Enter critical region 

exit!i; -- Exit critical region 

b[i] := false 

endwhile 

endproc; 

p(l,2) par p(2,1) -- Start two processes running in parallel 

endprog; -- Peterson 

Figure h Peterson's algorithm 

The mutual exclusion property we wish the algorithms to preserve can be formulated: 

M u t e x  = uZ.(-~(< exit!l > true A < exit!2 > true) A [K]Z), 

that is both processes should not be able to leave their critical sections at the same time, which 
implies that not both processes are in their critical section. [K]Z in the previous formula is an 
abbreviation for [K]Z - A~eK[a]Z, where K is a set of actions. We will use 

K = {enter[I, enter!2, exit!l ,  exit!2, req!l, req!2} 

for verifying the mutual exclusion property. The liveness property can be formulated: 

Live _=_ Livel A Live2 

where 

nive~ -- ,Z.([req!i]#Y.( < exit!i > true V [K]Y) h [K]Z) 

This formula expresses that if a process i has requested execution of its critical section by req!i then 
there shall be no infinite path of actions not consisting of an enter!i action in the corresponding 
transition system. As pointed out by Walker this is just one interpretation of the liveness properties 
of the algorithm. When we check the safety property we find that Peterson ~ Mu tex  as hoped, i.e. 
two processes cannot be in their critical sections at the same time. We also find that it satisfies Live. 
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c$1tl 1 

t l2  

cxl t l l  I 

Figure 2: The graph of the minimized Peterson algorithm 

7 Conclus ions  

We have presented an imperative language with constructs for sequential programming as well as 
constructs for parallel execution of processes, and an automated tool for analysis of concurrent 
programs written in the language. A few restrictions were imposed on the language to ensure that 
the semantics of a program is finite-state: e.g.: the types of variables must contain only finitely 
many elements, and that procedures cannot call each other recursively in an arbitrary manner. 
Many concurrent algorithms can be naturally described in this language. Our experience includes 
several other mutex algorithms (e.g. in [Lam86]) and two versions of the Alternating-Bit protocol 

[BSW691. 
We have presented a formal semantics for the language, which represents the execution of a program 
on a multiprocessor with shared memory, without assuming that e.g. assignment statements are 
atomic. This means that  the results of analysis are valid for a direct implementation of the algorithm. 

The semantics was given through a translation to CCS. The efficiency of the resulting "code" is on 
par with the results of hand translations. The advantage of this is that CWB and associated systems 
can be used to carry out different forms of analysis. A disadvantage of the present implementation is 
that properties of programs must be formulated in terms of communication events and not in terms 

of predicates over the state of the program. 
Desirable extensions of the language include a module concept to structure large programs and enable 
several instantiations of processes. This leads to problems with conflicting access sorts: a newly 
instantiated process needs to know on which ports it should communicate. One way to achieve this 
is to use CCS restriction and relabeling operators, but if these are used recursively, the resulting 
agents will not in general be finite state. Another way is to define the translation into the ~r-calculus 
[MPW89a, MPW89b] rather than into CCS (in the rr-calculus an agent is explicitly parametrized on 

its free port names). 
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An interesting topic of further research is to give Lunsen a more direct semantics in terms of states 
and transitions between states, and to compare this semantics with the translational semantics in 
this paper. 

R e f e r e n c e s  

[AZ81] 

[BdSV88] 

[BSW69] 

[CES86] 

[CPS891 

[GLZ89] 

[HL83] 

[Lam86] 

[Mi1891 

[MPW89a] 

[MPW89b] 

[PS85] 

[aasv87] 

[ss86] 

[Wa189] 

E. Astesiano and E. Zucca. Semantics of CSP via translation into CCS. In Mathematical 
Foundations of Computer Science, volume 118 of LNCS, pages 172-182. Springer Verlag, 
1981. 

G. Boudol, R. de Simone, and D. Vergamini. Experiment with Auto and Autograph on 
a simple case sliding window protocol. Technical Report 870, Inria, July 1988. 

K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmis- 
sions over half duplex lines. Communications of the ACM, 2(5):260-261, 1969. 

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concur- 
rent systems using temporal logic specification. ACM Trans. on Programming Languages 
and Systems, 8(2):244-263, April 1986. 

R. CIeaveland, J. Parrow, and B. Steffen. A semantics-based verification tool for finite- 
state systems. In Protocol Specification, Testing, and Verification IX, pages 287-302, 
1989. North-Holland. 

J.C. Godskesen, K.G. Larsen, and M. Zeeberg. TAV users manual. In Proc. Workshop 
on Automatic Verification Methods for Finite State Systems, Grenoble, 1989. 

M. Hennessy and W. Li. Translating a subset of Ada into CCS. In D. Bjoerner, edi- 
tor, Formal Description of Programming Concepts II, pages 227-249, Amsterdam, 1983. 
North-Holland. 

L. Lamport. The mutual exclusion problem part II - statement and solutions. Journal 
of the ACM, 33(2), 1986. 

R. Milner. Communication and Concurrency. Prentice Hall, 1989. 

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I. Technical 
Report ECS-LFCS-89-85, Department of Computer Science, University of Edinburgh, 
1989. 

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part II. Technical 
Report ECS-LFCS-89-86, Department of Computer Science, University of Edinburgh, 
1989. 

J.L. Peterson and A. Silberschatz. Operating System Concepts. Addison-Wesley, 1985. 

J. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in XESAR of the sliding 
window protocol. In Protocol Specification, Testing, and Verification VII. North-Holland, 
1987. 

S.A. Smolka and R.E. Strom. A CCS semantics for NIL. In M. Wirsing, editor, Formal 
Description of Programming Concepts III, pages 347-368, Amsterdam, 1986. North- 
Holland. 

D.J. Walker. Automated analysis of mutual exclusion algorithms using CCS. Formal 
Aspects of Computing, 1:273-292, 1989. 


