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Abstract 

A method for solving CCS equations of type (AIX)\L ~ B, where X is unknown, is pre- 
sented. The method is useful in a top-down design methodology: if a system (B) and some of 
its submodules (.4) axe specified, solving such an equation amounts to constructing the missing 
submodules. The method works by successively transforming equations into simpler equations, 
in parallel with generation of a solution. It has been implemented as a semi-automatic program, 
which has been applied to the generation of receivers of two Mternating-bit protocols. 

1 I n t r o d u c t i o n  

One of the most important and difficult fields in computer science is to develop methods for con- 
struction of complex systems. Most design methodologies rely on rnocIularization: systems are 
partitioned into sets of submodules, and each submodule is given a specification. These specifica- 
tions contain sufficient information for combining the modules. Thus, implementation details can 
be disregarded in most stages of the design. 

In this paper, we will consider the particular problem of designing systems composed of several 
nondeterministic modules executing in parallel. As an example, consider a communication protocol, 
where the submodules are a sender, a receiver, and a medium. In IMB83], Merlin and Bochmann 
observe that when all but one of the submodules have been specified, a specification of the remaining 
module can be derived automatically. For example, when the sender and medium have been 
specified, the specification of the receiver can be deduced. One limitation in [MB83] is that 
specifications are expressed in terms of execution sequences. This means that they do not contain 
enough information to determine some aspects, e.g. deadlock potentials, of the behaviour of the 
system. Thus, a receiver satisfying the automatically generated specification may cause deadlocks. 

Our contribution in this paper is to apply the ideas in [MB83] to a more refined specification 
method, namely Milner's Calculus of Communicating Systems (CCS, see e.g. [Mil80]). Specifica- 
tions are in CCS called agents, and there is a notion of observation equivalence, written ~-., between 
agents. Essentially, two agents are observation equivalent if they can not be distinguished by an 
external observer. This equivalence is more discriminating than comparing execution sequences; 
in particular it is sensitive to deadlock potentials. There is also a formal syntax for combining 
agents: a system composed of agents A1, A2, . . . ,  An executing in parallel and communicating over 

channels L is written 
(A1]A~I"" IA,)\L 

In a top-down design methodology, the designer starts with an agent, call it B, representing 
the behaviour of the whole system to be constructed. He divides the system into n modules, 
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communicating over channels L, and proceeds to construct for each module i an agent Ai. The 
criterion for a correct construction is that 

(Al t""  IA,)\L ~ B 

Now, assume that the designer has actually constructed all modules but one, say An. The missing 
module can then be obtained as a solution for X of the CCS equation (for clarity, put A = 

All-." IA.-!): 
( A I X ) \ L  ~ B (t) 

The theory of such equations has to some extent been studied by Shields ([Shi86b]); we defer a 
discussion on this and other related work to section 8. 

Unfortunately~ equations of type (t) may in general have several solutions, some of which are 
unsuitable for implementation. There are several reasons for this. Some solutions, although correct~ 
are unnecessarily complex. For example, consider a communication protocol where the receiver 
always retransmits each acknowledgment at least a million times. This receiver might be formally 
correct~ but would be highly inefficient. Other solutions are correct only in a formal sense, because 
of idealizations in the specification. An example of this is presented in section 7. Since we believe 
it impossible to give general criteria on good solutions, we feel that a semi-automatic procedure, 
where a designer can guide the generation of agents towards suitable solutions, is appropriate. In 
this way our method differs from that of Shields. 

We have developed such a procedure and implemented it as a program, which accepts equations 
of type (t) where A and B are finite state agents, and B is deterministic. Having tested the program 
on nontrivial examples, we conclude that when it runs without user interaction, strange solutions 
might result. Operated by a designer with some idea of what a good solution will look like, more 
sensible solutions will be generated. The program helps the designer to find an agent which is 
guaranteed to be (formally) correct, or convinces him that no such agent exists. 

The procedure is based on stepwise transformation of equations into simpler equations. As an 
example (we here assume the reader to be familiar with the fundamental concepts of CCS), assume 
that we want to solve 

a.NIL I X ~ a.b.NIL + b.a.NIL 

Here, the right hand side can do actions a and b. Since a.NIL can only do a, X must supply the b 
action. Substituting b.Y for X, we get the equation 

a.NIL I b.Y ~ a.b.NIL + b.a.NIL 

and by applying the expansion theorem on the left hand side we get 

a . (g IL  I b.Y ) + b.(a.gIL I Y ) ~ a.b.NIL + b.a.NIL 

but by congruence properties, this is implied by 

NIL I b.Y "~ b.NIL 
a.NIL I Y ~-, a.NIL 

We have now transformed the original equation into two simpler equations, and by similar reasoning 
we will find that Y --- NIL solves them both. Hence, X = b.NIL is a solution. 

The rest of this paper is structured as follows. In section 2 we define the syntax and semantics 
of the part of CCS which is related to our work. In section 3 we present the ideas of transforming 
equations in general, and provide a sufficient requirement for a transformation to be sound. Sections 
4 and 5 contain the particular transformations needed for solving equations of type (t), and a 
proof that these transformations are complete in the sense that if there is a solution, then it can 
be generated by a sequence of transformations. In section 6 we describe an implementation in the 
form of a semi-automatic program. This program is applied in section 7 to nontrivial examples: 
generating the receiver and medium of two versions of the alternating-bit protocol. Section 8 
contains ideas for extending this work~ and comparisons with similar efforts. 
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2 P r e l i m i n a r i e s  

In this section, we establish the notat ion for the rest of the paper.  Al though all concepts will be 
formally defined, the reader is advised to consult  some intr(~duction to CCS such as [Mil80] for 

intuition. 
Assume a set A c t  of actions where the  inverse of action a is ~. The  unobservable action r has 

no inverse. Let  I d  be a set of identifiers. The set A g  of agents is the smallest set tha t  contains I d  
and is closed under  the  following operators:  

a. (called prefixing) for a E A c t ;  prefix operator.  

+ (called nondeterminis t ic  choice); binary infix operator.  

] (called parallel composit ion);  binary infix operator.  

\ L  (called restriction) for L C A c t  - {T}, L finite; postfix operator.  

NIL agent constant.  

As a shor thand for (A)B)\L we will write A ))L B,  or even A I I B  when L is un impor tan t  or 
unders tood from the context.  As a shorthand for A1 + A2 + --.  + A ,  we write  

i = 1  

If n = 1, the above sum is jus t  A1, and if n = 0 it is NIL. 
An environment 8 is a par t ia l  function from I d  to Ag .  An identifier is said to be bound by ~' 

if it is in the domain  of 8,  otherwise it is free in 8. The  behaviour of an agent (i.e. the transitions 
that  the agent can perform) is always determined with  respect to an environment.  Thus,  we have 
for each a E A c t  and envi ronment  8 the binary transi t ion relation - ~  on agents. These relations 
are defined to be the smallest  relations satisfying the following clauses, which can be regarded as 
the operat ional  semantics of the  operators:  

A -%¢ A I A ~ ¢  A ~ 

a.A ~ e  A B + A -%¢ A' A + B 2+¢ A' 

A 2~.e A' A 2+e A' 
A]B -%¢ A']B BI A 2~  B]A' 

A "-%e A', B ~-~e B' 
A]B "L~e A'iB' 

A -%e A', a g . L , a ~ L  8(X) -Se A 
A \L  -%¢ A' \L X ~ e  A 

An agent B is a derivative of A (w.r.t. an environment  8) if for some n > 0 there are actions 

a l , . . . ,  an such tha t  
A ~ e  " '" ~ g  B 

If n = 0, this formula is interpreted as A = B. 

We define the experiment relation = ~ E ,  a E A c t  on agents in the following way: 

for some n > 0: A , ~ ¢  --" £ ~ c B  if a = r 

,, t imes 
A - ~ ¢  B i f f  

for some n,m >_ O: A - - ~  . . -  Z~e ~'E ---~e " '" Z~e B i f a  ~ 

n times m times 
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When the environment is understood from the context we will drop the index 8 in --~ and ===~. 
An agent A is deterministic iff all its derivatives B satisfy the following: 

A A 

for all a: B =g~ B I and B ==% B" implies B' = B" 

Essentially, this means that the agent can never do any T-actions, and that for each action a there 
is at most one transition labelled a from any given derivative. 

Let _ be the usual order on partial functions, i.e. f E g iff for all x such that f (x)  is defined, 
g(x) = f(z) .  Applied on environments, we say that 3 r extends ~ if ~ E 5 r. 

Let ~ be an environment. Extend the notion of (syntactic) subexpressions of agents by including 
$ (X) as a subexpression of X, for all identifiers X bound by 8. A free identifier Y is guarded in the 
agent A, iff all occurrences of Y in subexpressions of A are in subexpressions of type a.B. An agent 
is well guarded iff all free identifiers are guarded in it. This means that the initial transitions from 
the agent are not affected by extending 8. An agent is closed iff all identifiers in all subexpressions 
of it are bound. This means that neither transitions from the agent, nor transitions from any 
derivative, are affected by extending ~. 

With respect to a particular environment, a binary relation-R on closed agents is a simulation 
iff A R B  implies: 

for all a and A s such that A =:~ A I 

there exists a B ~ such that B - ~  B r and AIRB ' 

If both R and R -1 are simulations, R is said to be a bisimulation. Two closed agents A and 
B are observation equivalent, written A ~ B, iff there exists a bisimulation R such that ARB.  
Observation equivalence is extended to non-closed agents by A ~-. B iff in all extensions where A 

and B are closed, A ~ B. 
We will in the following use a, b, . . .  to denote actions, A, B, . . .  to denote agents, X, Y, . . .  to 

denote identifiers, and ~, jr, . . .  to denote environments. 

3 T a b l e a u x  

As mentioned in the introduction, our aim is to present a procedure for solving equations of type 
A tl X ~ B by successive transformations of equations. We formalise this reasoning by using 
tableaux. A tableau consists of two parts: a goal r and an environment 8. The intuition behind 
a tableau is that it represents an intermediate stage in producing a solution: the goal says what 
remains to be done, and the environment records the solution produced so far. A goal is a unary 
predicate over environments. For example, the goal "X ~ Y" is true of the environments assigning 

observationally equivalent agents to X and Y. As another example, the goal "X + X ~ X" is true 

of all environments. 
In order to solve an equation of type A II X ~ B we will start with an initial tableau with 

goal "A II X "~ B" and art environment where A and B are closed and X is free, meaning "it 
remains to find an environment satisfying A[I X ~ B?'  The procedure then works by successively 
simplifying the equations and extending the environment until a tableau with goal true is reached. 
The environment of that tableau will contain the desired solution. 

In the rest of this section we will make these ideas formally rigorous. We use the following 

goals and satisfaction relation ~ between environments and goals: 

~ true 
8 ~ A ~ B  
8 ~ r A r '  

~ r ~ r '  

always 
for all ~ such that A ..~ B in 
i ff~ ~ F a n d ~  ~ r '  
iff for all jr ___ ~, jr ~ r implies jr ~ F' 
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Note the definition of implication, reminiscent of Kripke-semantics for intuitionistic logic. The 
idea is that  "F implies F t" is true when any evidence of F, i.e. extension of the environment where 
F holds, is also evidence of F t. Here, this can be thought of as implicit universal quantification 
over free identifiers. Actually, D will never occur in any of our tableaux, but  this notion of logical 
implication is convenient when formulating results about tableau transformations. In particular, 
we will use it when formulating the soundness result. 

An important  property of the satisfaction relation is the preservation property: if an environ- 
ment satisfies a goal, then all extensions of the environment also satisfy the goal. 

P r o p o s i t i o n  1 ( p r e s e r v a t i o n  p r o p e r t y )  If ~ ~ r and ~ E 3 r, then )r ~ F 

Proof: By induction on r .  It is important that  the atomic goals (of type A ~ B) possess the 
preservation property; our definition of observation equivalenceon non-closed agents ensures this. 
[] 

We will write (F, 8) for a tableau with goal F and environment £. A tableau (F, ~) is satisfiable 
if there exists an extension 7 of 8 that  satisfies F. 

In the following, let ------} represent a transformation, i.e. a binary relation, on tableaux. We say 
that  such a transformation is safe if whenever (F, ~) - -+  (F', 8 ') ,  then $ ___ 8'  and 8' ~ F' D r .  
This means that  safe transformations can only add to the environment, and only strengthen the 
goal. Thus, if the resulting tableau is satisfiable by a part icular environment, then the original 
tableau is also satisfiable by the same environment. Note, however, that  a safe transformation might 
transform a satisfiable tableau into an unsatisfiable one. As an example of a safe transformation, 
by the expansion theorem in CCS: 

( ( a . a  i1~} x) ~ B, O) ~ (r.(A ll{a} Y) ~ B, (X ~-~ a.Y)) 

We now prove that  safe tableau transformations are indeed sound: if we start  with a tableau 
and successively transform it until we arrive at  the goal true, then we have derived an extension 
of the environment which satisfies the original goal. 

P r o p o s i t i o n  2 ( S o u n d n e s s )  Let ----}* be the reflexive transitive closure of ----*. If ----* is safe, 
then for all tableaux (F, ~):  

If ( r ,  ~) ---** (true, 3 r) then ~ E 3 r and 3 r ~ F 

Proof: If -----* is safe, then -----+* is safe. This is proven by induction on the length of the trans- 
formation sequence; here the preservation property is crucial. Hence, by the definition of safe 
transformations we get that  

( r ,  ~) ---~* (true, 5 r) implies ~ E 3 r and 3 r ~ true D r 

But 3 r ~ true D r is easily seen to be true iff 3 r ~ r is true. [] 
The tableau framework is not limited to solving equations of type A II X ~ B. Indeed, it can 

be applied to any equation in CCS, or even to any predicates which have the preservation property. 

4 Finite Agents 

We will present a tableau method for solving AI[  X ~ B where A and B are finite state, i.e. 
having only finitely many syntactically different derivatives. Thus, the initial tableau is of type 
(AI[ X ~ B, ~), where g only contains definitions of identifiers appearing in A and B. The main 
idea is to guess the initial actions of X, and subsequently split the equation into several, hopefully 
smaller, equations. 
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In general, a goal will be a conjunction of equations of type E ~ C, where C is closed in the 
environment. To present the tableau transformation ---* in a readable way, we first give the trans- 
formations which are sufficient when A and B are finite, i.e. do not contain any recursively defined 
identifiers. There are two types of transformation rules: instantiations extend the environment, 
and consequences strengthen the goal. 

• Instantiation: If (F,~> is a tableau with A H X ~ B in the goal, and X is free in ~, then 

i = I  t 

Here, al, . . . ,a,~ are actions and X1 . . . . .  X~ are fresh (free in g) and can be added to E. 
distinct identifiers. 

Consequence: <F,E) ---+ (r ' ,~> if F' is obtained from F in one of the following ways: 

- Equivalence: An equation E ~ B, where E and B are observation equivalent (w.r.t. ~) 
can be removed. Here, removing the last conjunct of a goal means to replace the goal 
with true. 

- Splitting: If r contains an equation E ,.~ B where E is well guarded, and the transitions 
from E are E ~ E i for j C [1, . . . ,  n], and there are agents B1, . . . ,  B ,  such that: 

and also 

for all j :  B = : ~  B i 

E ~ ei.B ~ ~. B 

then the equation E ~ B can be replaced by the equations 

r* 

A Si) 
i=1 

The rules deserve some comments. The instantiation transformation amounts to guessing the 
initial actions a l , . . . ,  a,~ of X. In section 6 we will provide heuristics for this. The equivalence 
transformation will be applied sparingly, since it is computationally expensive to cheek observation 
equivalence. If, as in this section, we restrict attention to finite agents, then it is sufficient to apply 
the equivalence transformation to "NIL ,~ NIL". Even if arbitrary finite state agents are considered, 
it suffices to apply the equivalence transformation in the final stage of a transformation sequence 
(ef. the proof of proposition 7). 

The purpbse of the splitting rule is to split an equation E ~ B into a set of equations Ej ~ Bi, 
where all Ej are derivatives of E and all B i are derivatives of B. When B is deterministic, the 
requirements on Bj can be simplified as demonstrated by the following proposition: 

P r o p o s i t i o n  3 Assume the ]ollowing: 

2o = 

B 

bo = 

{e l , . . . ,  e~} a finite set of actions 
- 

An agent, deterministic and closed in 

{b =fir : for some B', B ~-~ B'} 

Then, the premises of the splitting rule 

for all j :  B = : ~  B~ (A1) 
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3 ~ ( ~  ei"Bi) ~ (A2) 

are equivalent with 
B = Bi if e i = r 

for all j :  B ~ , B  i i f e  1 ¢ r  (B1) 

?o _C bo and, if r • ~, ~o = bo (B2) 

Proof: 

(A1 =~ B1) By A1, for each j there are two cases: 

1. ej = r. Since B ~ B is always true for any B, and B is deterministic, it follows 
B = B  i. 

2. ej 7~r. Then, by A1, B Z~. . .  r B ' - ~  B " - ~ . . -  Z+Bj. SinceB, and hence B", are 
ei 

deterministic, it follows B = B' and B" = Bi, i.e. B --* B i. 

(A2 =~ B2) Since B is deterministic, it follows that bo is the set of observable experiments possible 

from B, i.e. bo = {b 7 ~ r : for some B': B = ~  B'}. By A2, this implies ~o C bo. Also, if 
r ~ ~, then ~ = eo is the set of observable experiments possible from ~ j  ei.Bi, whence by A2, 

~o = bo. 

(B1 ::~ A1) Immediate. 

(B1 and B2 =~ A2) Let I be the identity relation on agents which are closed in ~. It is straight- 
forward to verify that under conditions B1 and B2, the relation 

I u ej.B i , B 
'~ j=l  

is a bisimulation, whence A2 follows, n 

Thus, to perform a splitting of E ~, B when B is deterministic, first compute (by the operational 
semantics in section 2) the transitions from E and B. Then, if condition B2 heids, condition B1 
gives the agents Bj. If B2 does not hold, no splitting transformation is applicable. 

A simple example might be illuminating at this point: ~ssume that we want to solve 

(a.b.NILlX)\{b } ~ a.c.NIL 

In the following, we write tableaux as boxes with goals to the left and environments to the right. 
For this particular example, we write I1 for ll{b}- Hence, the original tableau is: 

I a.b.NILHX~a.c.NIL t 0 ] 

Only an instantiation transformation is applicable here. By the heuristics (to be described in 
section 6), X should have an initial b action to match the potential b transition in a.b.NIL. Instan- 
tinting X to b.Y gives 

a.b.NIL Il X~a.e.NIL I X ~  b'Y t 

The left hand side of the equation is now well guarded. Both sides of the equation can initially do 
an a transition: for the left hand side the result is "b.NIL II X',  and for the right hand side the 
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result is "e.NIL'. The premises of the splitting rule are satisfied, and as a result of the splitting 
we get 

I l 1 
The left hand side is still well guarded, and can now only do a r transition, resulting in "NIL II Y ' .  
By another splitting: 

I N I L I I Y ~ c ' N I L  I X ~ - ~ ' Y  l 

Of course, it is now easy to see that Y = c.NIL will solve this goal. Following our method strictly, 
it is time to supply the initial actions of Y. By the heuristics, Y should have an initial e to conform 
with the initial e transition in the right hand side: 

X ~  b.Y 
NIL tl Y ~ c.NIL Y ~-~ e.Z 

By a splitting we get 

I X~-+b.Y NIL ]l Z ~ NIL Y ~ e.Z 

After instantiating Z to NIL, and applying a final splitting transformation we get 

X ~  b.Y 
NIL ~ NIL Y ~ e.Z 

Z ~ NIL 

The equivalence transformation removes the last equation; we get the goal true and the environment 
contains the desired solution, which can be written b.e.NIL. 

There seems to be a fair amount of tedium in applying the tableau method even to simple 
problems. Our point is that this tedium can be automated. Indeed, the program described in 
section 6 will do the above steps automatically. 

To demonstrate the soundness of this tableau method (i.e. that when the goal true is reached, 
the environment will make the original goal true), we prove that ---+ is safe, and appeal to propo- 
sition 2. 

P r o p o s i t i o n  4 - -~  is safe. 

Proof: For the instantiation and equivalence transformations this is obvious. For the splitting 
transformation, if E -~ Ej are the transitions from E and E is well guarded, then E ~ ~ i  ej.Ej. 
Also, by congruence properties of ~,  

A (E~ ~ Bj) implies e~. ~ ei.B ~ 
j=l 

Thus, from Aj Ej ~ Bj and the premises of the splitting rule we infer E ~ B, i.e. the goal is made 
stronger by replacing E ~ B with Aj Ej ~ Bj. [] 

For finite agents, ~ is complete in the following sense: starting with any satisfiable equation 
A II X ~ B where A and B are finite, the goal true can eventually be reached: 

P r o p o s i t i o n  5 (Comple teness )  Let r be a satisfiable goat A tl X ~, B where A and B are finite 
agents. Then, there exists an environment ~" such that 

(r, ~) - ~ "  (true, 5) 

Proof: See the proof of the related proposition 7. [2 
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5 Finite  State  Agents  

Obviously, with the tableau method in the previous section, it is impossible to generate environ- 
meats with recursively defined identifiers. The following extension of the instantiation transfor- 
mation will amend this situation: 

• Instantiation by identification: If (r,  £} is a tableau with A[I X ~ B in the goal, X is free 
in ~, and Y is an identifier bound by ~, then 

(X ~ Y} 

can be added to ~. 

Thus, it is possible to "identify" a free identifier with a bound identifier. Clearly, the extended 
tableau transformation is still safe. Instead of adding (X ~-4 y)  to the environment, we can 
uniformly substitute X by Y in the tableau - -  this has the same effect in terms of the --*¢ 
relations, and hence does not affect observation equivalence w.r.t. ~. 

A simple example will illustrate how the tableau method is used. Let A ~ a.A and B ,-~ 
a.B + b.B be an environment and assume we want to find an X satisfying AIX ,.~ B. The initial 
tableau is (for convenience, we do not show A ~ a.A and B ~ a.B + b.B; these are tacitly present 
in the environment): 

According to the heuristics, X should have an initial b action to conform with the initial b in B. 
By instantiating X to b.Y we get 

I,,* 
Now the left hand side is well guarded. Both sides of the equation can do a and b transitions; after 
a splitting we get 

AIX ~ B 
X ~  b.Y 

AIY ~ B 

The first equation in the goal is identical with the original equation. In the second equation Y is 
free, and should be instantiated. The heuristics suggest that Y should be identified with X, since 
they are in the same equations. Identifying Y with X yields: 

AIX ~ B X ~ b . X  
AIX ~ B 

There are now no free identifiers in the tableau. The goal contains two (identical) equations, these 
are true in the environment and can be removed. Hence, "X ~ b.X" is the desired solution. 

In the rest of this section we will prove that the tableau transformation is complete. The follow- 
ing lemma is crucial. It says that if an equation is in a form suitable for a splitting transformation, 
i.e. the left hand side is well guarded, then it can always be subjected to a splitting transformation 

which preserves satisfiabiliW. 

L e m m a  6 Let (F, ~) be a satisfiable tableau, i.e. there exists an extension ~" of ~ such that 
3 r ~ F. If an equation in F is E ~-, B, where E is well guarded and B is closed in ~, and the initial 

transitions from E are E ~ Ej for j E [1 . . . .  ,n], then there exist agents B1, . . .  , B ,  such that 

for all j :  B = ~ c  Bj 
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and 

and 

j = l  

Proof: In all extensions of ~ we have that  E : : ~  Ei; in particular this must hold in 7. By the 
premises, E ~ B is true in ~r. Thus, for all j -- 1 , . . .  ,n  the following diagram (where we write 
for ~ in environment 7) 

B 

can be completed with agents Bj to a commuting diagram 

E : ~ T  EI 

B ~ B i  

This implies that  

7 ~ A(E~-B~) 
j = l  

Since B is closed in $, B ~ B i implies B =~E Bj. By congruence properties of ~ with respect 
to guarded sam, we get (w.r.t. 7"): 

ei.B j ~ ~ ei.E j ~ E ~ B 
5=1 j=l 

However, since B and all Bj are closed under g, this implies that  w.r.t, g: 

~ e g ;  ~ B 
j = l  

O 
For the completeness result we make the following definitions: an agent is in parallel form iff 

it is in the form AII x where X is an identifier. An equation E ~ B is in parallel form iff its left 
hand side E is in parallel form, and its right hand side B is closed. The completeness result is that 
if a satisfiable goal consists of a finite number of equations in parallel form, then the goal true can 
be derived: 

P r o p o s i t i o n  7 ( C o m p l e t e n e s s )  Let (F,$)  be a satisfiable tableau where r consists of finitely 
many equations in parallel form, and all agents in the equations are finite state. Then, there exists 
an environment 7 such that 

( r ,  $) ----~* (true, Jr) 

Proof: The following proof outlines the algorithm behind our implementation of the tableau method 
described in section 6. 
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Since all involved agents are finite state, and the goal is satisfiable, it must be satisfiable by 
a finite environment 1. Call this environment 7. Such an environment can be defined by a finite 
number, call it n, of applications of the instantiation transformation. 

Apply induction on n = the number of necessary applications of the instantiation transforma- 
tion. For n -- 0, no instantiations are necessary. Hence, F = ~ and r is true of ~, whence all 
equations can be removed by the equivalence transformation. 

For the inductive step, n > 1, i.e. at least one instantiation is necessary. We assume the 
proposition for n - 1, and wilt prove it for n. Perform the following procedure: 

1. Distinguish between marked and unmarked equations in r .  Originally, all equations are 
unmarked. 

2. For each unmarked equation, such that the identifier to the right of II is bound by ~, do the 
following steps: 

(a) Apply a splitting transformation to the equation. This is always possible, since if an 
identifier is bound, it is well guarded (this follows from the form of the instantiation 
transformations), and hence lemma 6 applies. The result of the splitting will be a finite 
set of equations in parallel form. 

(b) Mark each resulting equation which has been treated before by this procedure (this 
requires remembering all equations treated by the procedure). 

3. Perform the steps under 2 repeatedly until there are no more unmarked equations with a 
bound identifier to the right of []. This will eventually happen: since all involved agents 
are finite state, only a finite number of different equations can be generated with splitting 
transformations. 

The resulting goal still is satisfiable by ~', and still consists of a finite number of equations in 
parallel form. There are now two different cases: 

1. There are no unmarked equations left at all. There may still be free identifiers in the goal, 
but their instantiation will not matter for the truth of ]7, since they will never be exercised 
when determining possible transitions. Hence, if F is true of one extension of ~, it is true 
of all extensions. But r is true of ~', thus it is true of all extensions, hence also of ~. This 
contradicts the assumption that at least one more instantiation is necessary. 

2. There is at least one unmarked equation left. This equation must have a free identifier to 
the right of I1" Thus, it is possible to apply an instantiation transformation to the goal. By 
choosing the transformation in accordance with F, the goal can now be satisfied by the rest 
of F, i.e. by n - 1 applications of instantiation. By induction, the proposition follows. [] 

Finally, it can be proven that if A ]1 X ~ B has a solution, then it has a solution bounded in 
size by the sizes of A and B. Hence, it is decidable whether it has a solution or not. 

6 An Implementation 

Our program for solving equations with the tableau method works in the following way: first, the 
user enters the equation A IlL X ~ B that he wants to solve. A and B must be finite state, and 
B must be deterministic. Also, the expected sort of the solution must be given (alternatively, 
the program will compute an expected sort). Thereafter, a semi automatic procedure will start 

1A finite set of recursive equations with guarded sum is sufficient to express any finite state agent; see eg. IMi184]. 
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as outlined in the proof of proposit ion 7: by t reat ing all equations with split t ing transformations 
unti l  no new equations are generated. 

The  p rogram does all split t ing transformations automatically.  When a free identifier X is to be 
insta~ntiated, the program permits  the user to identify X with a previously bound  identifier, or guess 
the initial actions of X.  When the program discovers that  the goal is unsatisfiable (e.g. by finding 
it impossible to perform a split t ing transformation) it backtracks to the  preceding instantiation. 

The  practical  use of such a program would be small, were it not for the fact that  good heuristics 
for the instantiat ions can be presented. At each instant iat ion the user decides whether  to follow 
or disregard the heuristics, and can thus avoid solutions which would not be suitable for imple- 
mentat ion.  The  user can explore different possibilities and bacl~track at will. He can even run the 
program in an automat ic  mode,  where all instantiat ions axe made according to the  heuristics. 

The most  impor tant  information presented to the user when a free identifier X is to be instan- 
t ia ted are the sets of admissible actions and useful actions. An action a is inadmissible for X if 
there is an equation A [[ X ~ B such that  if X were instant iated with an initial action a, then the 
equat ion would be unsatisfiable. Inadmissibility is in general hard to check, but  it can be approx- 
imated by k-lnadmissibil l ty as follows: for an agent A, let Trk(A) be  the set of traces (transition 
sequences where r t ransit ions have been deleted) of length _< k. An action a is k-inadmissible for 
X if Trk(A I] a.NIL) ~ Trk(B).  This means that  if X were instant iated with  an initial action 
a, then there would be traces (of length k) of A I] X which are not  traces of B. For every k, 
k-inadmlssibili ty implies inadmissibility. When determining which actions are admissible, the pro- 
g ram tries each action for k-inadmissibility up to some predetermined m a x i m u m  value of k. The 
higher max imum value of k, the more accurate the admissibility test ,  and the more computat ion 
t ime is spent in determining admissibility. The user can interactively modify this max imum value. 

In the equat ion A IlL X ~ B,  an action a is useful for X,  if there is a t ransi t ion of a derivative 
of A tlL X which depends on the fact that  X can do an initial a transition. The  useful actions can 
be computed  as follows: say that  a is covered by L if a E L or ~ E L. Then,  all actions not covered 
by the  restr ict ion L are useful for X.  Furthermore,  an action a is useful for X if A can perform a 
t ransi t ion sequence, not  containing any actions covered by L, but  containing ~ - -  in this case, an 
initial a in X can result in a synchronisation with this ~ in A. 

As an example of these concepts, consider the equation (from section 4) 

a.b.NIL I1(~} X "~ a.e.NIL 

Here, the  ~ction b is useful for X (it can result  in a synchronisation with b). Also, b is admissible. 
The  action e is useful, but  not  admissible - -  in fact, it is even 1-inadmissible. 

Instead of guessing the initial moves of X,  the user can decide to identify X with a bound 
identifier. At each choice, the program supplies the user with a list of adequate  bound identifiers. 

An identifier Y is adequate for X if the equations containing X const i tute  a subset of the equations 
containing Y,  and the  admissible and useful actions of X agree with  the  initial actions of Y. The 
intuit ion is that  this is a strong indication tha t  X could successfully be identified with Y: a solution 
for Y will always also be a solution for X.  

A simple example will i l lustrate the program. Assume that  we seek an agent X,  which in 
parallel with a buffer of capacity one yields a buffer of capacity two. A buffer of capacity one on 
channels a and b is defined by 

A ~-+ a.b.A 

and a buffer of capacity two on channels a and e is 

~ B ~--~ a.B I 
[ B I ,-+ e.B + a.e.B w 

The user also has to supply the restriction L for solving A IlL X ~-, B,  in this case the restriction is 
{b}. The  program infers a sort for the solution, in this case it is {b, e}, and the user acknowledges 

this. 



1t5 

Now the tableau method begins. We will here display the choice points as tableaux: to the left 
are equations containing the free identifier under consideration (note that the complete tableau 
contains more equations that are not immediately relevant for this identifier), in the middle is the 
solution generated so far, and to the right are the recommendations of the program. The first 
choice point is: 

[ A , , X ~ B  I No adequate bound identifiers I Admissible and useful actions: (b} I 

The user is presented with a menu of various alternatives; in this case he chooses to instantiate X 
according to the recommendation (the only initial action is b) The next choice point is: 

A ll X, ,~ B, I X ~ ~.X1 ] N° adequate b°und identifiers ] 
Admissible and useful actions: {c} 

Again, following the recommendation leads to the next choice point: 

A I] X2 ~-- B X ~-~ b.X1 Adequate bound identifiers: X 
b.A II X2 ~ B' X1 ~-* c.X2 Admissible and useful actions: {b} 

Now, following the recommendation to identify X~ with X, the program discovers that there are 
no more free identifiers, and proceeds to check the environment against the goal 2. In this case, the 
environment satisfies the goal, and the program reports the solution to the user: 

X1 ~ c.X 

The solution can be written X ~-~ b.c.X, i.e. it defines as expected a buffer of capacity one. 
When run in the automatic mode, the program resolves the instantiations according to the 

maximal strategy: 

1. If there is at least one adequate bound identifier, then identify with one of them. 

2. If there are no adequate bound identifiers, then instantiate with the set of all admissible and 
useful actions. 

The strategy is called "maximal" because the solutions will in general be agents that have maximal 
freedom: if more transitions are added, then they would either cause inadmissible behaviour, or 
would never be exercised. Maximality might, or might not, be a sensible criterion for good solutions. 
For most small examples, such as those presented in this paper (excepting section 7), the strategy 
produces the expected solutions automatically. It should be noted that the maximal strategy is 
not complete for satisfiable goals: it sometimes results in a diverging sequence of choices. 

7 The Alternat ing-Bi t  Protoco l  

In this section we study the effects of applying the the maximal strategy of the program to a 
nontrivial example: the alternating-bit protocol. 

The purpose of the alternating-bit protocol (originally presented in [BSW69]) is to provide 
reliable data transmission over an imperfect medium. Figure 1 shows the general structure of the 
protocol. It consists of three modules: a sender, a medium and a receiver. There are several 
versions of this protocol; we will begin by studying the protocol as presented in [MB83]. There, 

2Actually, it checks against the original goal rather than  the current goal; this has turned out to be more efficient 
in practice. 
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put  use 

Sender Receiver 
A i  

ao, dO. dO, 
a l ,  dl dl 
l e  de 
, p' 

Medium 

Notation: 

put  / use submitting/receiving a message to/from protocol 
d A / d~ transmitting/receiving a message to/from medium 
al / ai transmitting/receiving an acknowledgment to/from medium 
d~ / a~ receiving corrupt message/acknowledgment from medium 

Figure 1: The structure of the modules in the alternating-bit  protocol. 

the medium can corrupt but  not lose messages. A message is delivered to the sender through 
the primitive put,  and accepted from the receiver through the primitive use. The service of the 
protocol is that  of a perfect one place buffer, i.e. put  and use alternate: 

Service ~-* put .use .Service  

Figure 2 depicts state transition diagrams for the modules in the protocol. We will in this 
section consistently use such diagrams to represent agents; the transformation between diagrams 
and a system of recursive agent identifier definitions is trivial. 

The protocol works as follows. The sender adds a one bit sequence number to an incoming 
message (starting with 0 for the first message) and transmits it to the medium. We will not explic- 
itly represent message contents, but the sequence numbers are important  for the synchronisation 
properties of the protocol. Thus, we use do_ to represent transmission of messages with sequence 
number 0, and d..A~ for messages with sequence number 1. Following a transmission, the sender 
awaits an acknowledgment (actions a0 and al) with the same sequence number. After reception of 
the correct acknowledgment, the procedure is repeated: a new message can be accepted for trans- 
mission. This time the sequence number is inverted. If the sender receives an acknowledgment 
with wrong sequence number, or a corrupt acknowledgment (action a~), then it retransmits the 
last message. 

Our model of the sender differs from that  in [MB83] in one respect: in the states where ac- 
knowledgments are not expected, the sender may accept and discard spurious acknowledgments. 

The receiver acknowledges all messages (do, dl) by transmitt ing an acknowledgment with the 
same sequence number as the message (ao___, a A ). If the sequence number differs from the preceding 
one, then the message is not a retransmission, and is delivered to the user through the primitive 
use. If a corrupt message arrives (d~), then the last acknowledgment is retransmitted. 

The medium can contain at most one message or acknowledgment at a time, i.e. it is half 
duplex. Thus, following an action ~ (the inverse of dO, it either delivers the message through d~ 
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(A) (B) 

a..! 

(c) 

Figure 2: The modules in the alternating bit protocol. (A) The Sender. (B) The Receiver. (C) 
The Medium. 
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use 

dO,de 

dl 

a~k 

~O.al 

a t  

I0 

dl 
dl 

Figure 3: A most general receiver. 

or delivers a corrupt message through d~. Similarly, acknowledgments may be corrupted. 
The program for equation solving can be used to generated any one unknown module of the 

protocol. As an example, we have generated the receiver by solving the equation 

(Sender [Medium) II X ~ Service 

Here, ]1 means parallel composition and restriction over the internal actions (d~ and a__ L for i = 0 
and 1; di and ai for i = 0, 1, and e). When applying the maximal strategy to solve the equation, 
the result is the rather surprising receiver in figure 3. 

This receiver is a most general receiver in the sense that from any state, additional actions 
will either never be exercised or wilt lead to inadmissible behaviour of the protocol. It is clear 
that it is much more general than the expected solution in figure 2. For example, in the initial 
state, the receiver may begin by transmitting any sequence of acknowledgments. Of course, in 
a real implementation this would be ridiculous. Nevertheless, the receiver satisfies the formal 
problem. Indeed, with the medium being half duplex and of capacity one element, these extra 
acknowledgments are harmless: when the receiver has not accepted any message and it transmits 
an acknowledgment, then no message has been sent, and hence the sender is in a state where 
it discards the incoming acknowledgments. There are other similar paradoxical aspects of the 
behaviour of this receiver. Note, however, that the expected solution is contained as a subgraph 
(highlighted transitions). We take this example as a good illustration of our point: a completely 
automatic procedure for generating submodule behaviours is not always desirable. 

A variation on the alternating-bit protocol is to use a full-duplex medium, with capacity one 
element in each direction, and ability to lose messages. For simplicity, we assume that messages 
are either lost or delivered intact (this is a realistic assumption; there might be an error detection 
mechanism that discards all corrupt messages). The medium can be modelled as the parallel 
composition of two independent simplex media, where T actions correspond to message loss. The 
sender and receiver modules are modified by deleting all transitions dealing with corrupt messages 
(d~ and a~), and by adding timeout transitions to the sender (r transitions leading from states 
where the sender waits for acknowledgments to states where it can do retransmissions). These 
modules are shown in figure 4. 
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;,1 :::) ao pu t 'f ~ d0~dl  H~~ ~ 
(A) (B) 

t, d"O t,'~T 
(C) (D) 

Figure 4: Second version of the modules in the alternating-bit  protocol. (A) The Sender. (B) 
The Receiver. (C, D) Simplex media. The Medium in the protocol consists of these two media in 
parallel. 

Again, using the maximal strategy to solve the equation where the receiver is unknown, yields 
a most general solution as shown in figure 5. This solution does not depart  very much from the 
expected solution. The initial state is unreachable from the other states (in the initial state there 
is no useful dl action}, and in all states it is harmless to retransmit  the last acknowledgment or 
accept a duplicate of the last accepted message. 

In a similar way, and with similar results, the sender of the protocol can be generated when 
the receiver is known. It is even possible to generate a medium if both sender and receiver are 
known. A most general medium for the protocol in figure 4 is depicted in figure 7. Naturally, 
it is unlikely that  the medium is unknown in a real protocol design project. Instead, this result 
indicates the worst possible conditions under which the protocol will work. As can be seen in 
figure 7, the medium may not only lose messages, but  also generate spurious messages in certain 
situations, without harming the protocol. 

8 Conclus ions  and Comparisons  wi th  Re la ted  Work 

We have in this paper indicated one way to give meaning to CCS equations of type (AIX)\L ~ B, 
and presented a method for solving such equations. The method is based on a general tableau 
framework. Within this framework, we have formulated the transformations necessary for deriving 
solutions. These transformations form a basis for an implementation, which has been applied to 
generating the receiver of different versions of the alternating-bit  protocol. 

Our experience is that  a completely automatic procedure for solving equations is not always 
desirable. Typically, an equation (AIX)\L ~ B has many solutions. Even if it has a unique most 
general solution (i.e. a solution which simulates every other solution}, it is not certain that  this 
solution is suitable for implementation. Thus, when generating a solution, some criteria for what 
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F igure  5: A mos t  general  receiver of the  second vers ion of the  protocol .  

al 

d d ~ d o a l  aO, ~1. 
d~ 

~ a l ~ a l  .d.LQ a,,~ dO a 0 . 

al 

v 

dO 
d~ 

Figure  6: A most general medium of the second version of the protocol. To improve readability we 
have omitted the bars denoting inverted actions. In contrast with the previous solutions we here also 
indicate the non useful transitions. From each unlabelled state, actions which are not already labels of 

(useful) transitions are labels of non useful transitions. The same convention holds for labelled states, 
with the exception that  the label of the state is not a label of a non useful transition. Since such 

transitions will never be exercised, their target states are unimportant.  
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constitutes a good solution must be used. Obviously, such criteria are dependent on the particular 
equation to be solved. With our method, the program performs some of the transformations 
automatically, but  a user can effect critical transformations in order to guide the program towards 
a suitable solution. 

One interesting way to extend this work is to consider a larger class of equations. Already, the 
method is sufficiently powerful to treat several equations simultaneously. Hence, it can be used to 
solve problems as "find an X such that  A1 it X ~ B1 and also A2 II X ~ B2". Similarly, the method 
could handle nonlinear equations (e.g. "X ][ X ~ B") or even systems of nonlinear equations (e.g. 
"find X and Y such that  Z N Z t[ Y ~ B and Z [I Y li y ~ C" ). However, for the nonlinear case 
our methods for determining admissible and useful actions would not apply. 

Another way to extend the scope of this method is to consider other operators and other types 
of equivalences. For example, in TCSP ([BHR84]) there are other types of parallel operators, 
other types of nondeterministic choices, and a different equivalence relation. Also, the testing 
equivalences from [NH84] could be used in this context. We conjecture that  the tableau method 
would work well also in these systems. A congruence property of guarded sum would be sufficient 
for a sound splitting transformation. For a completeness result, a counterpart  of Iemma 6 is needed. 

It would be exciting to extend our method to include communication with value passing. 
The tableau transformation is easily extended by including events with value parameters and 
parametrised identifiers in the instantiations. The difficulty would be to provide good heuristics 
for choosing the value expressions in the output events. 

Since there is a vast literature on generating modules of complex systems, we will here only 
comment on some approaches related to our method. To our knowledge, the only work on solving 
CCS equations is [Shi86b] and [Shi86a]. There, equations of type (A[X) \L  ~ B are called "interface 
equations". For the case that  B is deterministic, and under some requirements (not very restrictive) 
on the sorts of A and B, necessary and sufficient conditions for the existence of solutions of such 
equations are given. In the case that  there exist solutions, an explicit construction of a solution is 
presented. This construction, and also the requirements for existence of a solution, are formulated 
in terms of the state spaces of A and B. There is, however, no indication that  this method can be 
used interactively and guided towards solutions which are suitable for implementation. 

We have already mentioned the work in [MB83]. There, a similar problem is considered with 
finite automata instead of agents, and trace equivalence instead of observation equivalence. Also, 
the definition of parallel composition is slightly different in that  the simultaneous execution of 
two actions does not always result in an unobservable action. Within this formalism, the authors 
derive a solution in terms of the "complement" operation on automata  (the complement of an 
automaton A accepts the complement of the language accepted by A). They apply this method 
to generate the receiver of the alternating-bit protocol, and remark that  the most general solution 
is not always the best one. Their suggested remedy is to start  by generating a most general 
solution, and proceed by deleting states and transitions which are unnecessary (i.e. can be deleted 
while preserving trace equivalence of the system). Also, they remark that  trace equivalence is not 
sufficient to demonstrate properties like deadlock freedom. 

The recent [BG86] goes one step further. There, the authors-present a method to automatically 
parti t ion an overall system behaviour B into submodules A 1 , . . . , A , .  These submodules, when 
composed in parallel, yields a behaviour which is trace equivalent with B. The idea is to partition 
the set of actions in B into different locations, and generate one module Ai for each location. The 
method assumes that  the modules communicate over unbounded perfect channels. 

In [ZWR*80], a semi automatic procedure is given on how to complete part ly specified modules 
into a system which will be guaranteed to be free of certain unwanted properties such as deadlocks. 
In [GY84], an algorithm is presented for generating one module of a protocol when a second module 
is given. However, in neither of these is there any formal specification of the expected service of the 
combined system. Algorithms for synthesis of concurrent programs from service specifications in 
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temporal logic are presented in [EC82] and [MW84]. A new direction is taken in lAPPS6]. There, 
specifications are formulated in knowledge logic (where assertions can be of type "module A knows 
the contents of message m"). 

Our method is based on transformation of tableaux. The main inspiration for this is [MWS0], 
where (sequential) functional programs are generated in a similar way by transforming predicate 
logic formulas. Later, this idea was extended to synthesis of asynchronously communicating net- 
works ([JMW86]). The approach is to first generate one single module, defined as a functional 
program, and subsequently transform this module into several modules working in parallel. This 
transformation is specifically aimed at generating dataflow networks. 
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