
Submodule Construction
as Equation Solving in CCS

Joachim Parrow*
Laboratory for Foundations of Computer Science

University of Edinburgh

Abstract

A method for solving CCS equations of type (AIX)\L ~ B, where X is unknown, is pre-
sented. The method is useful in a top-down design methodology: if a system (B) and some of
its submodules (.4) axe specified, solving such an equation amounts to constructing the missing
submodules. The method works by successively transforming equations into simpler equations,
in parallel with generation of a solution. It has been implemented as a semi-automatic program,
which has been applied to the generation of receivers of two Mternating-bit protocols.

1 I n t r o d u c t i o n

One of the most important and difficult fields in computer science is to develop methods for con-
struction of complex systems. Most design methodologies rely on rnocIularization: systems are
partitioned into sets of submodules, and each submodule is given a specification. These specifica-
tions contain sufficient information for combining the modules. Thus, implementation details can
be disregarded in most stages of the design.

In this paper, we will consider the particular problem of designing systems composed of several
nondeterministic modules executing in parallel. As an example, consider a communication protocol,
where the submodules are a sender, a receiver, and a medium. In IMB83], Merlin and Bochmann
observe that when all but one of the submodules have been specified, a specification of the remaining
module can be derived automatically. For example, when the sender and medium have been
specified, the specification of the receiver can be deduced. One limitation in [MB83] is that
specifications are expressed in terms of execution sequences. This means that they do not contain
enough information to determine some aspects, e.g. deadlock potentials, of the behaviour of the
system. Thus, a receiver satisfying the automatically generated specification may cause deadlocks.

Our contribution in this paper is to apply the ideas in [MB83] to a more refined specification
method, namely Milner's Calculus of Communicating Systems (CCS, see e.g. [Mil80]). Specifica-
tions are in CCS called agents, and there is a notion of observation equivalence, written ~-., between
agents. Essentially, two agents are observation equivalent if they can not be distinguished by an
external observer. This equivalence is more discriminating than comparing execution sequences;
in particular it is sensitive to deadlock potentials. There is also a formal syntax for combining
agents: a system composed of agents A1, A2, . . . , An executing in parallel and communicating over

channels L is written
(A1]A~I"" IA,)\L

In a top-down design methodology, the designer starts with an agent, call it B, representing
the behaviour of the whole system to be constructed. He divides the system into n modules,

*On leave from the Swedish Institute of Computer Science, Stockholm, Sweden

104

communicating over channels L, and proceeds to construct for each module i an agent Ai. The
criterion for a correct construction is that

(Al t"" IA,)\L ~ B

Now, assume that the designer has actually constructed all modules but one, say An. The missing
module can then be obtained as a solution for X of the CCS equation (for clarity, put A =

All-." IA.-!):
(A I X) \ L ~ B (t)

The theory of such equations has to some extent been studied by Shields ([Shi86b]); we defer a
discussion on this and other related work to section 8.

Unfortunately~ equations of type (t) may in general have several solutions, some of which are
unsuitable for implementation. There are several reasons for this. Some solutions, although correct~
are unnecessarily complex. For example, consider a communication protocol where the receiver
always retransmits each acknowledgment at least a million times. This receiver might be formally
correct~ but would be highly inefficient. Other solutions are correct only in a formal sense, because
of idealizations in the specification. An example of this is presented in section 7. Since we believe
it impossible to give general criteria on good solutions, we feel that a semi-automatic procedure,
where a designer can guide the generation of agents towards suitable solutions, is appropriate. In
this way our method differs from that of Shields.

We have developed such a procedure and implemented it as a program, which accepts equations
of type (t) where A and B are finite state agents, and B is deterministic. Having tested the program
on nontrivial examples, we conclude that when it runs without user interaction, strange solutions
might result. Operated by a designer with some idea of what a good solution will look like, more
sensible solutions will be generated. The program helps the designer to find an agent which is
guaranteed to be (formally) correct, or convinces him that no such agent exists.

The procedure is based on stepwise transformation of equations into simpler equations. As an
example (we here assume the reader to be familiar with the fundamental concepts of CCS), assume
that we want to solve

a.NIL I X ~ a.b.NIL + b.a.NIL

Here, the right hand side can do actions a and b. Since a.NIL can only do a, X must supply the b
action. Substituting b.Y for X, we get the equation

a.NIL I b.Y ~ a.b.NIL + b.a.NIL

and by applying the expansion theorem on the left hand side we get

a . (g IL I b.Y) + b.(a.gIL I Y) ~ a.b.NIL + b.a.NIL

but by congruence properties, this is implied by

NIL I b.Y "~ b.NIL
a.NIL I Y ~-, a.NIL

We have now transformed the original equation into two simpler equations, and by similar reasoning
we will find that Y --- NIL solves them both. Hence, X = b.NIL is a solution.

The rest of this paper is structured as follows. In section 2 we define the syntax and semantics
of the part of CCS which is related to our work. In section 3 we present the ideas of transforming
equations in general, and provide a sufficient requirement for a transformation to be sound. Sections
4 and 5 contain the particular transformations needed for solving equations of type (t), and a
proof that these transformations are complete in the sense that if there is a solution, then it can
be generated by a sequence of transformations. In section 6 we describe an implementation in the
form of a semi-automatic program. This program is applied in section 7 to nontrivial examples:
generating the receiver and medium of two versions of the alternating-bit protocol. Section 8
contains ideas for extending this work~ and comparisons with similar efforts.

105

2 P r e l i m i n a r i e s

In this section, we establish the notat ion for the rest of the paper. Al though all concepts will be
formally defined, the reader is advised to consult some intr(~duction to CCS such as [Mil80] for

intuition.
Assume a set A c t of actions where the inverse of action a is ~. The unobservable action r has

no inverse. Let I d be a set of identifiers. The set A g of agents is the smallest set tha t contains I d
and is closed under the following operators:

a. (called prefixing) for a E A c t ; prefix operator.

+ (called nondeterminis t ic choice); binary infix operator.

] (called parallel composit ion); binary infix operator.

\ L (called restriction) for L C A c t - {T}, L finite; postfix operator.

NIL agent constant.

As a shor thand for (A)B)\L we will write A))L B, or even A I I B when L is un impor tan t or
unders tood from the context. As a shorthand for A1 + A2 + --. + A , we write

i = 1

If n = 1, the above sum is jus t A1, and if n = 0 it is NIL.
An environment 8 is a par t ia l function from I d to Ag . An identifier is said to be bound by ~'

if it is in the domain of 8, otherwise it is free in 8. The behaviour of an agent (i.e. the transitions
that the agent can perform) is always determined with respect to an environment. Thus, we have
for each a E A c t and envi ronment 8 the binary transi t ion relation - ~ on agents. These relations
are defined to be the smallest relations satisfying the following clauses, which can be regarded as
the operat ional semantics of the operators:

A -%¢ A I A ~ ¢ A ~

a.A ~ e A B + A -%¢ A' A + B 2+¢ A'

A 2~.e A' A 2+e A'
A]B -%¢ A']B BI A 2~ B]A'

A "-%e A', B ~-~e B'
A]B "L~e A'iB'

A -%e A', a g . L , a ~ L 8(X) -Se A
A \L -%¢ A' \L X ~ e A

An agent B is a derivative of A (w.r.t. an environment 8) if for some n > 0 there are actions

a l , . . . , an such tha t
A ~ e " '" ~ g B

If n = 0, this formula is interpreted as A = B.

We define the experiment relation = ~ E , a E A c t on agents in the following way:

for some n > 0: A , ~ ¢ --" £ ~ c B if a = r

,, t imes
A - ~ ¢ B i f f

for some n,m >_ O: A - - ~ . . - Z~e ~'E ---~e " '" Z~e B i f a ~

n times m times

106

When the environment is understood from the context we will drop the index 8 in --~ and ===~.
An agent A is deterministic iff all its derivatives B satisfy the following:

A A

for all a: B =g~ B I and B ==% B" implies B' = B"

Essentially, this means that the agent can never do any T-actions, and that for each action a there
is at most one transition labelled a from any given derivative.

Let _ be the usual order on partial functions, i.e. f E g iff for all x such that f (x) is defined,
g(x) = f(z) . Applied on environments, we say that 3 r extends ~ if ~ E 5 r.

Let ~ be an environment. Extend the notion of (syntactic) subexpressions of agents by including
$ (X) as a subexpression of X, for all identifiers X bound by 8. A free identifier Y is guarded in the
agent A, iff all occurrences of Y in subexpressions of A are in subexpressions of type a.B. An agent
is well guarded iff all free identifiers are guarded in it. This means that the initial transitions from
the agent are not affected by extending 8. An agent is closed iff all identifiers in all subexpressions
of it are bound. This means that neither transitions from the agent, nor transitions from any
derivative, are affected by extending ~.

With respect to a particular environment, a binary relation-R on closed agents is a simulation
iff A R B implies:

for all a and A s such that A =:~ A I

there exists a B ~ such that B - ~ B r and AIRB '

If both R and R -1 are simulations, R is said to be a bisimulation. Two closed agents A and
B are observation equivalent, written A ~ B, iff there exists a bisimulation R such that ARB.
Observation equivalence is extended to non-closed agents by A ~-. B iff in all extensions where A

and B are closed, A ~ B.
We will in the following use a, b, . . . to denote actions, A, B, . . . to denote agents, X, Y, . . . to

denote identifiers, and ~, jr, . . . to denote environments.

3 T a b l e a u x

As mentioned in the introduction, our aim is to present a procedure for solving equations of type
A tl X ~ B by successive transformations of equations. We formalise this reasoning by using
tableaux. A tableau consists of two parts: a goal r and an environment 8. The intuition behind
a tableau is that it represents an intermediate stage in producing a solution: the goal says what
remains to be done, and the environment records the solution produced so far. A goal is a unary
predicate over environments. For example, the goal "X ~ Y" is true of the environments assigning

observationally equivalent agents to X and Y. As another example, the goal "X + X ~ X" is true

of all environments.
In order to solve an equation of type A II X ~ B we will start with an initial tableau with

goal "A II X "~ B" and art environment where A and B are closed and X is free, meaning "it
remains to find an environment satisfying A[I X ~ B?' The procedure then works by successively
simplifying the equations and extending the environment until a tableau with goal true is reached.
The environment of that tableau will contain the desired solution.

In the rest of this section we will make these ideas formally rigorous. We use the following

goals and satisfaction relation ~ between environments and goals:

~ true
8 ~ A ~ B
8 ~ r A r '

~ r ~ r '

always
for all ~ such that A ..~ B in
i ff~ ~ F a n d ~ ~ r '
iff for all jr ___ ~, jr ~ r implies jr ~ F'

107

Note the definition of implication, reminiscent of Kripke-semantics for intuitionistic logic. The
idea is that "F implies F t" is true when any evidence of F, i.e. extension of the environment where
F holds, is also evidence of F t. Here, this can be thought of as implicit universal quantification
over free identifiers. Actually, D will never occur in any of our tableaux, but this notion of logical
implication is convenient when formulating results about tableau transformations. In particular,
we will use it when formulating the soundness result.

An important property of the satisfaction relation is the preservation property: if an environ-
ment satisfies a goal, then all extensions of the environment also satisfy the goal.

P r o p o s i t i o n 1 (p r e s e r v a t i o n p r o p e r t y) If ~ ~ r and ~ E 3 r, then)r ~ F

Proof: By induction on r . It is important that the atomic goals (of type A ~ B) possess the
preservation property; our definition of observation equivalenceon non-closed agents ensures this.
[]

We will write (F, 8) for a tableau with goal F and environment £. A tableau (F, ~) is satisfiable
if there exists an extension 7 of 8 that satisfies F.

In the following, let ------} represent a transformation, i.e. a binary relation, on tableaux. We say
that such a transformation is safe if whenever (F, ~) - -+ (F', 8 ') , then $ ___ 8' and 8' ~ F' D r .
This means that safe transformations can only add to the environment, and only strengthen the
goal. Thus, if the resulting tableau is satisfiable by a part icular environment, then the original
tableau is also satisfiable by the same environment. Note, however, that a safe transformation might
transform a satisfiable tableau into an unsatisfiable one. As an example of a safe transformation,
by the expansion theorem in CCS:

((a . a i1~} x) ~ B, O) ~ (r.(A ll{a} Y) ~ B, (X ~-~ a.Y))

We now prove that safe tableau transformations are indeed sound: if we start with a tableau
and successively transform it until we arrive at the goal true, then we have derived an extension
of the environment which satisfies the original goal.

P r o p o s i t i o n 2 (S o u n d n e s s) Let ----}* be the reflexive transitive closure of ----*. If ----* is safe,
then for all tableaux (F, ~):

If (r , ~) ---** (true, 3 r) then ~ E 3 r and 3 r ~ F

Proof: If -----* is safe, then -----+* is safe. This is proven by induction on the length of the trans-
formation sequence; here the preservation property is crucial. Hence, by the definition of safe
transformations we get that

(r , ~) ---~* (true, 5 r) implies ~ E 3 r and 3 r ~ true D r

But 3 r ~ true D r is easily seen to be true iff 3 r ~ r is true. []
The tableau framework is not limited to solving equations of type A II X ~ B. Indeed, it can

be applied to any equation in CCS, or even to any predicates which have the preservation property.

4 Finite Agents

We will present a tableau method for solving AI[X ~ B where A and B are finite state, i.e.
having only finitely many syntactically different derivatives. Thus, the initial tableau is of type
(AI[X ~ B, ~), where g only contains definitions of identifiers appearing in A and B. The main
idea is to guess the initial actions of X, and subsequently split the equation into several, hopefully
smaller, equations.

08

In general, a goal will be a conjunction of equations of type E ~ C, where C is closed in the
environment. To present the tableau transformation ---* in a readable way, we first give the trans-
formations which are sufficient when A and B are finite, i.e. do not contain any recursively defined
identifiers. There are two types of transformation rules: instantiations extend the environment,
and consequences strengthen the goal.

• Instantiation: If (F,~> is a tableau with A H X ~ B in the goal, and X is free in ~, then

i = I t

Here, al, . . . ,a,~ are actions and X1 X~ are fresh (free in g) and can be added to E.
distinct identifiers.

Consequence: <F,E) ---+ (r ' ,~> if F' is obtained from F in one of the following ways:

- Equivalence: An equation E ~ B, where E and B are observation equivalent (w.r.t. ~)
can be removed. Here, removing the last conjunct of a goal means to replace the goal
with true.

- Splitting: If r contains an equation E ,.~ B where E is well guarded, and the transitions
from E are E ~ E i for j C [1, . . . , n], and there are agents B1, . . . , B , such that:

and also

for all j : B = : ~ B i

E ~ ei.B ~ ~. B

then the equation E ~ B can be replaced by the equations

r*

A Si)
i=1

The rules deserve some comments. The instantiation transformation amounts to guessing the
initial actions a l , . . . , a,~ of X. In section 6 we will provide heuristics for this. The equivalence
transformation will be applied sparingly, since it is computationally expensive to cheek observation
equivalence. If, as in this section, we restrict attention to finite agents, then it is sufficient to apply
the equivalence transformation to "NIL ,~ NIL". Even if arbitrary finite state agents are considered,
it suffices to apply the equivalence transformation in the final stage of a transformation sequence
(ef. the proof of proposition 7).

The purpbse of the splitting rule is to split an equation E ~ B into a set of equations Ej ~ Bi,
where all Ej are derivatives of E and all B i are derivatives of B. When B is deterministic, the
requirements on Bj can be simplified as demonstrated by the following proposition:

P r o p o s i t i o n 3 Assume the]ollowing:

2o =

B

bo =

{e l , . . . , e~} a finite set of actions
-

An agent, deterministic and closed in

{b =fir : for some B', B ~-~ B'}

Then, the premises of the splitting rule

for all j : B = : ~ B~ (A1)

109

3 ~ (~ ei"Bi) ~ (A2)

are equivalent with
B = Bi if e i = r

for all j : B ~ , B i i f e 1 ¢ r (B1)

?o _C bo and, if r • ~, ~o = bo (B2)

Proof:

(A1 =~ B1) By A1, for each j there are two cases:

1. ej = r. Since B ~ B is always true for any B, and B is deterministic, it follows
B = B i.

2. ej 7~r. Then, by A1, B Z~. . . r B ' - ~ B " - ~ . . - Z+Bj. SinceB, and hence B", are
ei

deterministic, it follows B = B' and B" = Bi, i.e. B --* B i.

(A2 =~ B2) Since B is deterministic, it follows that bo is the set of observable experiments possible

from B, i.e. bo = {b 7 ~ r : for some B': B = ~ B'}. By A2, this implies ~o C bo. Also, if
r ~ ~, then ~ = eo is the set of observable experiments possible from ~ j ei.Bi, whence by A2,

~o = bo.

(B1 ::~ A1) Immediate.

(B1 and B2 =~ A2) Let I be the identity relation on agents which are closed in ~. It is straight-
forward to verify that under conditions B1 and B2, the relation

I u ej.B i , B
'~ j=l

is a bisimulation, whence A2 follows, n

Thus, to perform a splitting of E ~, B when B is deterministic, first compute (by the operational
semantics in section 2) the transitions from E and B. Then, if condition B2 heids, condition B1
gives the agents Bj. If B2 does not hold, no splitting transformation is applicable.

A simple example might be illuminating at this point: ~ssume that we want to solve

(a.b.NILlX)\{b } ~ a.c.NIL

In the following, we write tableaux as boxes with goals to the left and environments to the right.
For this particular example, we write I1 for ll{b}- Hence, the original tableau is:

I a.b.NILHX~a.c.NIL t 0]

Only an instantiation transformation is applicable here. By the heuristics (to be described in
section 6), X should have an initial b action to match the potential b transition in a.b.NIL. Instan-
tinting X to b.Y gives

a.b.NIL Il X~a.e.NIL I X ~ b'Y t

The left hand side of the equation is now well guarded. Both sides of the equation can initially do
an a transition: for the left hand side the result is "b.NIL II X', and for the right hand side the

110

result is "e.NIL'. The premises of the splitting rule are satisfied, and as a result of the splitting
we get

I l 1
The left hand side is still well guarded, and can now only do a r transition, resulting in "NIL II Y ' .
By another splitting:

I N I L I I Y ~ c ' N I L I X ~ - ~ ' Y l

Of course, it is now easy to see that Y = c.NIL will solve this goal. Following our method strictly,
it is time to supply the initial actions of Y. By the heuristics, Y should have an initial e to conform
with the initial e transition in the right hand side:

X ~ b.Y
NIL tl Y ~ c.NIL Y ~-~ e.Z

By a splitting we get

I X~-+b.Y NIL]l Z ~ NIL Y ~ e.Z

After instantiating Z to NIL, and applying a final splitting transformation we get

X ~ b.Y
NIL ~ NIL Y ~ e.Z

Z ~ NIL

The equivalence transformation removes the last equation; we get the goal true and the environment
contains the desired solution, which can be written b.e.NIL.

There seems to be a fair amount of tedium in applying the tableau method even to simple
problems. Our point is that this tedium can be automated. Indeed, the program described in
section 6 will do the above steps automatically.

To demonstrate the soundness of this tableau method (i.e. that when the goal true is reached,
the environment will make the original goal true), we prove that ---+ is safe, and appeal to propo-
sition 2.

P r o p o s i t i o n 4 - -~ is safe.

Proof: For the instantiation and equivalence transformations this is obvious. For the splitting
transformation, if E -~ Ej are the transitions from E and E is well guarded, then E ~ ~ i ej.Ej.
Also, by congruence properties of ~,

A (E~ ~ Bj) implies e~. ~ ei.B ~
j=l

Thus, from Aj Ej ~ Bj and the premises of the splitting rule we infer E ~ B, i.e. the goal is made
stronger by replacing E ~ B with Aj Ej ~ Bj. []

For finite agents, ~ is complete in the following sense: starting with any satisfiable equation
A II X ~ B where A and B are finite, the goal true can eventually be reached:

P r o p o s i t i o n 5 (Comple teness) Let r be a satisfiable goat A tl X ~, B where A and B are finite
agents. Then, there exists an environment ~" such that

(r, ~) - ~ " (true, 5)

Proof: See the proof of the related proposition 7. [2

111

5 Finite State Agents

Obviously, with the tableau method in the previous section, it is impossible to generate environ-
meats with recursively defined identifiers. The following extension of the instantiation transfor-
mation will amend this situation:

• Instantiation by identification: If (r, £} is a tableau with A[I X ~ B in the goal, X is free
in ~, and Y is an identifier bound by ~, then

(X ~ Y}

can be added to ~.

Thus, it is possible to "identify" a free identifier with a bound identifier. Clearly, the extended
tableau transformation is still safe. Instead of adding (X ~-4 y) to the environment, we can
uniformly substitute X by Y in the tableau - - this has the same effect in terms of the --*¢
relations, and hence does not affect observation equivalence w.r.t. ~.

A simple example will illustrate how the tableau method is used. Let A ~ a.A and B ,-~
a.B + b.B be an environment and assume we want to find an X satisfying AIX ,.~ B. The initial
tableau is (for convenience, we do not show A ~ a.A and B ~ a.B + b.B; these are tacitly present
in the environment):

According to the heuristics, X should have an initial b action to conform with the initial b in B.
By instantiating X to b.Y we get

I,,*
Now the left hand side is well guarded. Both sides of the equation can do a and b transitions; after
a splitting we get

AIX ~ B
X ~ b.Y

AIY ~ B

The first equation in the goal is identical with the original equation. In the second equation Y is
free, and should be instantiated. The heuristics suggest that Y should be identified with X, since
they are in the same equations. Identifying Y with X yields:

AIX ~ B X ~ b . X
AIX ~ B

There are now no free identifiers in the tableau. The goal contains two (identical) equations, these
are true in the environment and can be removed. Hence, "X ~ b.X" is the desired solution.

In the rest of this section we will prove that the tableau transformation is complete. The follow-
ing lemma is crucial. It says that if an equation is in a form suitable for a splitting transformation,
i.e. the left hand side is well guarded, then it can always be subjected to a splitting transformation

which preserves satisfiabiliW.

L e m m a 6 Let (F, ~) be a satisfiable tableau, i.e. there exists an extension ~" of ~ such that
3 r ~ F. If an equation in F is E ~-, B, where E is well guarded and B is closed in ~, and the initial

transitions from E are E ~ Ej for j E [1 ,n], then there exist agents B1, . . . , B , such that

for all j : B = ~ c Bj

112

and

and

j = l

Proof: In all extensions of ~ we have that E : : ~ Ei; in particular this must hold in 7. By the
premises, E ~ B is true in ~r. Thus, for all j -- 1 , . . . ,n the following diagram (where we write
for ~ in environment 7)

B

can be completed with agents Bj to a commuting diagram

E : ~ T EI

B ~ B i

This implies that

7 ~ A(E~-B~)
j = l

Since B is closed in $, B ~ B i implies B =~E Bj. By congruence properties of ~ with respect
to guarded sam, we get (w.r.t. 7"):

ei.B j ~ ~ ei.E j ~ E ~ B
5=1 j=l

However, since B and all Bj are closed under g, this implies that w.r.t, g:

~ e g ; ~ B
j = l

O
For the completeness result we make the following definitions: an agent is in parallel form iff

it is in the form AII x where X is an identifier. An equation E ~ B is in parallel form iff its left
hand side E is in parallel form, and its right hand side B is closed. The completeness result is that
if a satisfiable goal consists of a finite number of equations in parallel form, then the goal true can
be derived:

P r o p o s i t i o n 7 (C o m p l e t e n e s s) Let (F,$) be a satisfiable tableau where r consists of finitely
many equations in parallel form, and all agents in the equations are finite state. Then, there exists
an environment 7 such that

(r , $) ----~* (true, Jr)

Proof: The following proof outlines the algorithm behind our implementation of the tableau method
described in section 6.

113

Since all involved agents are finite state, and the goal is satisfiable, it must be satisfiable by
a finite environment 1. Call this environment 7. Such an environment can be defined by a finite
number, call it n, of applications of the instantiation transformation.

Apply induction on n = the number of necessary applications of the instantiation transforma-
tion. For n -- 0, no instantiations are necessary. Hence, F = ~ and r is true of ~, whence all
equations can be removed by the equivalence transformation.

For the inductive step, n > 1, i.e. at least one instantiation is necessary. We assume the
proposition for n - 1, and wilt prove it for n. Perform the following procedure:

1. Distinguish between marked and unmarked equations in r . Originally, all equations are
unmarked.

2. For each unmarked equation, such that the identifier to the right of II is bound by ~, do the
following steps:

(a) Apply a splitting transformation to the equation. This is always possible, since if an
identifier is bound, it is well guarded (this follows from the form of the instantiation
transformations), and hence lemma 6 applies. The result of the splitting will be a finite
set of equations in parallel form.

(b) Mark each resulting equation which has been treated before by this procedure (this
requires remembering all equations treated by the procedure).

3. Perform the steps under 2 repeatedly until there are no more unmarked equations with a
bound identifier to the right of []. This will eventually happen: since all involved agents
are finite state, only a finite number of different equations can be generated with splitting
transformations.

The resulting goal still is satisfiable by ~', and still consists of a finite number of equations in
parallel form. There are now two different cases:

1. There are no unmarked equations left at all. There may still be free identifiers in the goal,
but their instantiation will not matter for the truth of]7, since they will never be exercised
when determining possible transitions. Hence, if F is true of one extension of ~, it is true
of all extensions. But r is true of ~', thus it is true of all extensions, hence also of ~. This
contradicts the assumption that at least one more instantiation is necessary.

2. There is at least one unmarked equation left. This equation must have a free identifier to
the right of I1" Thus, it is possible to apply an instantiation transformation to the goal. By
choosing the transformation in accordance with F, the goal can now be satisfied by the rest
of F, i.e. by n - 1 applications of instantiation. By induction, the proposition follows. []

Finally, it can be proven that if A]1 X ~ B has a solution, then it has a solution bounded in
size by the sizes of A and B. Hence, it is decidable whether it has a solution or not.

6 An Implementation

Our program for solving equations with the tableau method works in the following way: first, the
user enters the equation A IlL X ~ B that he wants to solve. A and B must be finite state, and
B must be deterministic. Also, the expected sort of the solution must be given (alternatively,
the program will compute an expected sort). Thereafter, a semi automatic procedure will start

1A finite set of recursive equations with guarded sum is sufficient to express any finite state agent; see eg. IMi184].

114

as outlined in the proof of proposit ion 7: by t reat ing all equations with split t ing transformations
unti l no new equations are generated.

The p rogram does all split t ing transformations automatically. When a free identifier X is to be
insta~ntiated, the program permits the user to identify X with a previously bound identifier, or guess
the initial actions of X. When the program discovers that the goal is unsatisfiable (e.g. by finding
it impossible to perform a split t ing transformation) it backtracks to the preceding instantiation.

The practical use of such a program would be small, were it not for the fact that good heuristics
for the instantiat ions can be presented. At each instant iat ion the user decides whether to follow
or disregard the heuristics, and can thus avoid solutions which would not be suitable for imple-
mentat ion. The user can explore different possibilities and bacl~track at will. He can even run the
program in an automat ic mode, where all instantiat ions axe made according to the heuristics.

The most impor tant information presented to the user when a free identifier X is to be instan-
t ia ted are the sets of admissible actions and useful actions. An action a is inadmissible for X if
there is an equation A [[X ~ B such that if X were instant iated with an initial action a, then the
equat ion would be unsatisfiable. Inadmissibility is in general hard to check, but it can be approx-
imated by k-lnadmissibil l ty as follows: for an agent A, let Trk(A) be the set of traces (transition
sequences where r t ransit ions have been deleted) of length _< k. An action a is k-inadmissible for
X if Trk(A I] a.NIL) ~ Trk(B). This means that if X were instant iated with an initial action
a, then there would be traces (of length k) of A I] X which are not traces of B. For every k,
k-inadmlssibili ty implies inadmissibility. When determining which actions are admissible, the pro-
g ram tries each action for k-inadmissibility up to some predetermined m a x i m u m value of k. The
higher max imum value of k, the more accurate the admissibility test , and the more computat ion
t ime is spent in determining admissibility. The user can interactively modify this max imum value.

In the equat ion A IlL X ~ B, an action a is useful for X, if there is a t ransi t ion of a derivative
of A tlL X which depends on the fact that X can do an initial a transition. The useful actions can
be computed as follows: say that a is covered by L if a E L or ~ E L. Then, all actions not covered
by the restr ict ion L are useful for X. Furthermore, an action a is useful for X if A can perform a
t ransi t ion sequence, not containing any actions covered by L, but containing ~ - - in this case, an
initial a in X can result in a synchronisation with this ~ in A.

As an example of these concepts, consider the equation (from section 4)

a.b.NIL I1(~} X "~ a.e.NIL

Here, the ~ction b is useful for X (it can result in a synchronisation with b). Also, b is admissible.
The action e is useful, but not admissible - - in fact, it is even 1-inadmissible.

Instead of guessing the initial moves of X, the user can decide to identify X with a bound
identifier. At each choice, the program supplies the user with a list of adequate bound identifiers.

An identifier Y is adequate for X if the equations containing X const i tute a subset of the equations
containing Y, and the admissible and useful actions of X agree with the initial actions of Y. The
intuit ion is that this is a strong indication tha t X could successfully be identified with Y: a solution
for Y will always also be a solution for X.

A simple example will i l lustrate the program. Assume that we seek an agent X, which in
parallel with a buffer of capacity one yields a buffer of capacity two. A buffer of capacity one on
channels a and b is defined by

A ~-+ a.b.A

and a buffer of capacity two on channels a and e is

~ B ~--~ a.B I
[B I ,-+ e.B + a.e.B w

The user also has to supply the restriction L for solving A IlL X ~-, B, in this case the restriction is
{b}. The program infers a sort for the solution, in this case it is {b, e}, and the user acknowledges

this.

1t5

Now the tableau method begins. We will here display the choice points as tableaux: to the left
are equations containing the free identifier under consideration (note that the complete tableau
contains more equations that are not immediately relevant for this identifier), in the middle is the
solution generated so far, and to the right are the recommendations of the program. The first
choice point is:

[A , , X ~ B I No adequate bound identifiers I Admissible and useful actions: (b} I

The user is presented with a menu of various alternatives; in this case he chooses to instantiate X
according to the recommendation (the only initial action is b) The next choice point is:

A ll X, ,~ B, I X ~ ~.X1] N° adequate b°und identifiers]
Admissible and useful actions: {c}

Again, following the recommendation leads to the next choice point:

A I] X2 ~-- B X ~-~ b.X1 Adequate bound identifiers: X
b.A II X2 ~ B' X1 ~-* c.X2 Admissible and useful actions: {b}

Now, following the recommendation to identify X~ with X, the program discovers that there are
no more free identifiers, and proceeds to check the environment against the goal 2. In this case, the
environment satisfies the goal, and the program reports the solution to the user:

X1 ~ c.X

The solution can be written X ~-~ b.c.X, i.e. it defines as expected a buffer of capacity one.
When run in the automatic mode, the program resolves the instantiations according to the

maximal strategy:

1. If there is at least one adequate bound identifier, then identify with one of them.

2. If there are no adequate bound identifiers, then instantiate with the set of all admissible and
useful actions.

The strategy is called "maximal" because the solutions will in general be agents that have maximal
freedom: if more transitions are added, then they would either cause inadmissible behaviour, or
would never be exercised. Maximality might, or might not, be a sensible criterion for good solutions.
For most small examples, such as those presented in this paper (excepting section 7), the strategy
produces the expected solutions automatically. It should be noted that the maximal strategy is
not complete for satisfiable goals: it sometimes results in a diverging sequence of choices.

7 The Alternat ing-Bi t Protoco l

In this section we study the effects of applying the the maximal strategy of the program to a
nontrivial example: the alternating-bit protocol.

The purpose of the alternating-bit protocol (originally presented in [BSW69]) is to provide
reliable data transmission over an imperfect medium. Figure 1 shows the general structure of the
protocol. It consists of three modules: a sender, a medium and a receiver. There are several
versions of this protocol; we will begin by studying the protocol as presented in [MB83]. There,

2Actually, it checks against the original goal rather than the current goal; this has turned out to be more efficient
in practice.

116

put use

Sender Receiver
A i

ao, dO. dO,
a l , dl dl
l e de
, p'

Medium

Notation:

put / use submitting/receiving a message to/from protocol
d A / d~ transmitting/receiving a message to/from medium
al / ai transmitting/receiving an acknowledgment to/from medium
d~ / a~ receiving corrupt message/acknowledgment from medium

Figure 1: The structure of the modules in the alternating-bit protocol.

the medium can corrupt but not lose messages. A message is delivered to the sender through
the primitive put, and accepted from the receiver through the primitive use. The service of the
protocol is that of a perfect one place buffer, i.e. put and use alternate:

Service ~-* put .use .Service

Figure 2 depicts state transition diagrams for the modules in the protocol. We will in this
section consistently use such diagrams to represent agents; the transformation between diagrams
and a system of recursive agent identifier definitions is trivial.

The protocol works as follows. The sender adds a one bit sequence number to an incoming
message (starting with 0 for the first message) and transmits it to the medium. We will not explic-
itly represent message contents, but the sequence numbers are important for the synchronisation
properties of the protocol. Thus, we use do_ to represent transmission of messages with sequence
number 0, and d..A~ for messages with sequence number 1. Following a transmission, the sender
awaits an acknowledgment (actions a0 and al) with the same sequence number. After reception of
the correct acknowledgment, the procedure is repeated: a new message can be accepted for trans-
mission. This time the sequence number is inverted. If the sender receives an acknowledgment
with wrong sequence number, or a corrupt acknowledgment (action a~), then it retransmits the
last message.

Our model of the sender differs from that in [MB83] in one respect: in the states where ac-
knowledgments are not expected, the sender may accept and discard spurious acknowledgments.

The receiver acknowledges all messages (do, dl) by transmitt ing an acknowledgment with the
same sequence number as the message (ao___, a A). If the sequence number differs from the preceding
one, then the message is not a retransmission, and is delivered to the user through the primitive
use. If a corrupt message arrives (d~), then the last acknowledgment is retransmitted.

The medium can contain at most one message or acknowledgment at a time, i.e. it is half
duplex. Thus, following an action ~ (the inverse of dO, it either delivers the message through d~

117

dO

ae

dO,
de

~ . ~ ae

(A) (B)

a..!

(c)

Figure 2: The modules in the alternating bit protocol. (A) The Sender. (B) The Receiver. (C)
The Medium.

118

use

dO,de

dl

a~k

~O.al

a t

I0

dl
dl

Figure 3: A most general receiver.

or delivers a corrupt message through d~. Similarly, acknowledgments may be corrupted.
The program for equation solving can be used to generated any one unknown module of the

protocol. As an example, we have generated the receiver by solving the equation

(Sender [Medium) II X ~ Service

Here,]1 means parallel composition and restriction over the internal actions (d~ and a__ L for i = 0
and 1; di and ai for i = 0, 1, and e). When applying the maximal strategy to solve the equation,
the result is the rather surprising receiver in figure 3.

This receiver is a most general receiver in the sense that from any state, additional actions
will either never be exercised or wilt lead to inadmissible behaviour of the protocol. It is clear
that it is much more general than the expected solution in figure 2. For example, in the initial
state, the receiver may begin by transmitting any sequence of acknowledgments. Of course, in
a real implementation this would be ridiculous. Nevertheless, the receiver satisfies the formal
problem. Indeed, with the medium being half duplex and of capacity one element, these extra
acknowledgments are harmless: when the receiver has not accepted any message and it transmits
an acknowledgment, then no message has been sent, and hence the sender is in a state where
it discards the incoming acknowledgments. There are other similar paradoxical aspects of the
behaviour of this receiver. Note, however, that the expected solution is contained as a subgraph
(highlighted transitions). We take this example as a good illustration of our point: a completely
automatic procedure for generating submodule behaviours is not always desirable.

A variation on the alternating-bit protocol is to use a full-duplex medium, with capacity one
element in each direction, and ability to lose messages. For simplicity, we assume that messages
are either lost or delivered intact (this is a realistic assumption; there might be an error detection
mechanism that discards all corrupt messages). The medium can be modelled as the parallel
composition of two independent simplex media, where T actions correspond to message loss. The
sender and receiver modules are modified by deleting all transitions dealing with corrupt messages
(d~ and a~), and by adding timeout transitions to the sender (r transitions leading from states
where the sender waits for acknowledgments to states where it can do retransmissions). These
modules are shown in figure 4.

119

;,1 :::) ao pu t 'f ~ d0~dl H~~ ~
(A) (B)

t, d"O t,'~T
(C) (D)

Figure 4: Second version of the modules in the alternating-bit protocol. (A) The Sender. (B)
The Receiver. (C, D) Simplex media. The Medium in the protocol consists of these two media in
parallel.

Again, using the maximal strategy to solve the equation where the receiver is unknown, yields
a most general solution as shown in figure 5. This solution does not depart very much from the
expected solution. The initial state is unreachable from the other states (in the initial state there
is no useful dl action}, and in all states it is harmless to retransmit the last acknowledgment or
accept a duplicate of the last accepted message.

In a similar way, and with similar results, the sender of the protocol can be generated when
the receiver is known. It is even possible to generate a medium if both sender and receiver are
known. A most general medium for the protocol in figure 4 is depicted in figure 7. Naturally,
it is unlikely that the medium is unknown in a real protocol design project. Instead, this result
indicates the worst possible conditions under which the protocol will work. As can be seen in
figure 7, the medium may not only lose messages, but also generate spurious messages in certain
situations, without harming the protocol.

8 Conclus ions and Comparisons wi th Re la ted Work

We have in this paper indicated one way to give meaning to CCS equations of type (AIX)\L ~ B,
and presented a method for solving such equations. The method is based on a general tableau
framework. Within this framework, we have formulated the transformations necessary for deriving
solutions. These transformations form a basis for an implementation, which has been applied to
generating the receiver of different versions of the alternating-bit protocol.

Our experience is that a completely automatic procedure for solving equations is not always
desirable. Typically, an equation (AIX)\L ~ B has many solutions. Even if it has a unique most
general solution (i.e. a solution which simulates every other solution}, it is not certain that this
solution is suitable for implementation. Thus, when generating a solution, some criteria for what

120
dO,
al

u s e

dO,)
aO

dO, ~
a]•dl, a_O0

U

dl ~ aodl'

F igure 5: A mos t general receiver of the second vers ion of the protocol .

al

d d ~ d o a l aO, ~1.
d~

~ a l ~ a l .d.LQ a,,~ dO a 0 .

al

v

dO
d~

Figure 6: A most general medium of the second version of the protocol. To improve readability we
have omitted the bars denoting inverted actions. In contrast with the previous solutions we here also
indicate the non useful transitions. From each unlabelled state, actions which are not already labels of

(useful) transitions are labels of non useful transitions. The same convention holds for labelled states,
with the exception that the label of the state is not a label of a non useful transition. Since such

transitions will never be exercised, their target states are unimportant.

121

constitutes a good solution must be used. Obviously, such criteria are dependent on the particular
equation to be solved. With our method, the program performs some of the transformations
automatically, but a user can effect critical transformations in order to guide the program towards
a suitable solution.

One interesting way to extend this work is to consider a larger class of equations. Already, the
method is sufficiently powerful to treat several equations simultaneously. Hence, it can be used to
solve problems as "find an X such that A1 it X ~ B1 and also A2 II X ~ B2". Similarly, the method
could handle nonlinear equations (e.g. "X][X ~ B") or even systems of nonlinear equations (e.g.
"find X and Y such that Z N Z t[Y ~ B and Z [I Y li y ~ C"). However, for the nonlinear case
our methods for determining admissible and useful actions would not apply.

Another way to extend the scope of this method is to consider other operators and other types
of equivalences. For example, in TCSP ([BHR84]) there are other types of parallel operators,
other types of nondeterministic choices, and a different equivalence relation. Also, the testing
equivalences from [NH84] could be used in this context. We conjecture that the tableau method
would work well also in these systems. A congruence property of guarded sum would be sufficient
for a sound splitting transformation. For a completeness result, a counterpart of Iemma 6 is needed.

It would be exciting to extend our method to include communication with value passing.
The tableau transformation is easily extended by including events with value parameters and
parametrised identifiers in the instantiations. The difficulty would be to provide good heuristics
for choosing the value expressions in the output events.

Since there is a vast literature on generating modules of complex systems, we will here only
comment on some approaches related to our method. To our knowledge, the only work on solving
CCS equations is [Shi86b] and [Shi86a]. There, equations of type (A[X) \L ~ B are called "interface
equations". For the case that B is deterministic, and under some requirements (not very restrictive)
on the sorts of A and B, necessary and sufficient conditions for the existence of solutions of such
equations are given. In the case that there exist solutions, an explicit construction of a solution is
presented. This construction, and also the requirements for existence of a solution, are formulated
in terms of the state spaces of A and B. There is, however, no indication that this method can be
used interactively and guided towards solutions which are suitable for implementation.

We have already mentioned the work in [MB83]. There, a similar problem is considered with
finite automata instead of agents, and trace equivalence instead of observation equivalence. Also,
the definition of parallel composition is slightly different in that the simultaneous execution of
two actions does not always result in an unobservable action. Within this formalism, the authors
derive a solution in terms of the "complement" operation on automata (the complement of an
automaton A accepts the complement of the language accepted by A). They apply this method
to generate the receiver of the alternating-bit protocol, and remark that the most general solution
is not always the best one. Their suggested remedy is to start by generating a most general
solution, and proceed by deleting states and transitions which are unnecessary (i.e. can be deleted
while preserving trace equivalence of the system). Also, they remark that trace equivalence is not
sufficient to demonstrate properties like deadlock freedom.

The recent [BG86] goes one step further. There, the authors-present a method to automatically
parti t ion an overall system behaviour B into submodules A 1 , . . . , A , . These submodules, when
composed in parallel, yields a behaviour which is trace equivalent with B. The idea is to partition
the set of actions in B into different locations, and generate one module Ai for each location. The
method assumes that the modules communicate over unbounded perfect channels.

In [ZWR*80], a semi automatic procedure is given on how to complete part ly specified modules
into a system which will be guaranteed to be free of certain unwanted properties such as deadlocks.
In [GY84], an algorithm is presented for generating one module of a protocol when a second module
is given. However, in neither of these is there any formal specification of the expected service of the
combined system. Algorithms for synthesis of concurrent programs from service specifications in

122

temporal logic are presented in [EC82] and [MW84]. A new direction is taken in lAPPS6]. There,
specifications are formulated in knowledge logic (where assertions can be of type "module A knows
the contents of message m").

Our method is based on transformation of tableaux. The main inspiration for this is [MWS0],
where (sequential) functional programs are generated in a similar way by transforming predicate
logic formulas. Later, this idea was extended to synthesis of asynchronously communicating net-
works ([JMW86]). The approach is to first generate one single module, defined as a functional
program, and subsequently transform this module into several modules working in parallel. This
transformation is specifically aimed at generating dataflow networks.

Acknowledgments

I am grateful to Bengt Jonsson, Robin Milner, Colin Stirling, and David Walker for a critical
reading of the manuscript. This work was carried out under a grant from the British Science and
Engineering Research Council

References

lAPP86]

IBG86]

[BHR84]

[BSW69]

[EC82]

[GY84]

[JMW86]

[MB83]

[MilS0]

[Mil84]

Foto Afrati, Christos Papadimitriou, and George Papageorgiou. The synthesis of com-
munication protocols. In Proceedings of the fifth ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pages 263-271, 1986.

Gregor yon Bochmann and Reinhard Gotzhein. Deriving protocol specifications from
service specifications. In Proceedings of the A CM SIGCOM Symposium, pages 148-156,
1986.

S. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560-599, 1984.

K Bartlett , R Scantlebury, and P Wilkinson. A note on reliable full-duplex transmis-
sions over half duplex lines. Communications of the ACM, 2(5):260-261, 1969.

E. Emerson and E. Clarke. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer Programming, 2(3):241-266, 1982.

Mohamed Gouda and Yao-Tin Yu. Synthesis of communicating finite-state machines
with guaranteed progress. IEEE Transactions on Communications, COM-32(7):779-
788, 1984.

Bengt Jonsson, Zohar Manna, and Richard Waldir~ger. Towards deductive synthesis
of dataflow networks. In Proceedings of Symposium on Logic in Computer Science,
pages 26-37, 1986.

Philip Merlin and Gregor yon Bochmann. On the construction of submodule specifi-
cations and communication protocols. A CM Transactions on Programming Languages
and Systems, 5(1):1-25, 1983.

Robin Milner. A Calculus of Communicating Systems. Volume 92 of Lecture Notes of
Computer Science, Springer Verlag, 1980.

Robin Milner. A complete inference system for a class of regular behaviours. J. of
Computer System Science, 28:439-466, 1984.

123

[Mw80]

[MW84]

[NH84]

[Shi86a]

[Shi86b]

[ZWR*80]

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
A CM Transactions on Programming Languages and Systems, 2(1), 1980.

Zohar Manna and Pierre Wolper. Synthesis of communicating processes from tempo-
ral logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68-93, 1984.

R de Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83-133, 1984.

M W Shields. Extending the Interface Equation. Technical Report SE/079/3, Electronic
Engineering Laboratories, University of Kent at Canterbury, August 1986.

M W Shields. Solving the Interface Equation. Technical Report SE/079/2, Electronic
Engineering Laboratories, University of Kent at Canterbury, July 1986.

P Zafiropulo, C H West, H Rudin, D D Cowan, and D Brand. Towards aztalyzing and
synthesizing protocols. IEEE Transactions on Communications, COM-28(4):651-661,
1980.

