
A Sorted Semantic Framework for Applied
Process Calculi (Extended Abstract)

Johannes Borgström(B), Ramūnas Gutkovas, Joachim Parrow, Björn Victor,
and Johannes Åman Pohjola

Department of Information Technology, Uppsala University, Uppsala, Sweden
johannes.borgstrom@it.uu.se

Abstract. Applied process calculi include advanced programming con-
structs such as type systems, communication with pattern matching,
encryption primitives, concurrent constraints, nondeterminism, process
creation, and dynamic connection topologies. Several such formalisms,
e.g. the applied pi calculus, are extensions of the the pi-calculus; a grow-
ing number is geared towards particular applications or computational
paradigms.

Our goal is a unified framework to represent different process calculi
and notions of computation. To this end, we extend our previous work
on psi-calculi with novel abstract patterns and pattern matching, and
add sorts to the data term language, giving sufficient criteria for sub-
ject reduction to hold. Our framework can accommodate several existing
process calculi; the resulting transition systems are isomorphic to the
originals up to strong bisimulation. We also demonstrate different notions
of computation on data terms, including cryptographic primitives and a
lambda-calculus with erratic choice. Substantial parts of the meta-theory
of sorted psi-calculi have been machine-checked using Nominal Isabelle.

1 Introduction

There is today a growing number of high-level constructs in the area of con-
currency. Examples include type systems, communication with pattern match-
ing, encryption primitives, concurrent constraints, nondeterminism, and dynamic
connection topologies. Combinations of such constructs are included in a variety
of application oriented process calculi. For each such calculus its internal con-
sistency, in terms of congruence results and algebraic laws, must be established
independently. Our aim is a framework where many such calculi fit and where
such results are derived once and for all, eliminating the need for individual
proofs about each calculus.

Our effort in this direction is the framework of psi-calculi [1], which pro-
vides machine-checked proofs that important meta-theoretical properties, such
as compositionality of bisimulation, hold in all instances of the framework. In
this paper we introduce a novel generalization of pattern matching, decoupled
from the definition of substitution, and introduce sorts for data terms and names.

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 103–118, 2014.
DOI: 10.1007/978-3-319-05119-2 7, c© Springer International Publishing Switzerland 2014

104 J. Borgström et al.

The generalized pattern matching is a new contribution that holds general inter-
est; here it allows us to directly capture computation on data in advanced process
calculi, without elaborate encodings. We evaluate our framework by providing
instances that are isomorphic to standard calculi, and by representing several dif-
ferent notions of computation. This is an advance over our previous work, where
we had to resort to nontrivial encodings with unclear formal correspondence to
the standard calculi.

1.1 Background: Psi-calculi

A psi-calculus has a notion of data terms, ranged over by K,L,M,N , and we
write M N .P to represent an agent sending the term N along the channel M
(which is also a data term), continuing as the agent P . We write K(λx̃)X .Q to
represent an agent that can input along the channel K, receiving some object
matching the pattern X, where x̃ are the variables bound by the prefix. These
two agents can interact under two conditions. First, the two channels must be
channel equivalent, as defined by the channel equivalence predicate M

.↔ K.
Second, N must match the pattern X.

Formally, a transition is of kind Ψ � P
α−→ P ′, meaning that in an environ-

ment represented by the assertion Ψ the agent P can do an action α to become
P ′. An assertion embodies a collection of facts used to infer conditions such as
the channel equivalence predicate .↔. To continue the example, if N = X[x̃ := ˜L]

we will have Ψ � M N .P | K(λx̃)X .Q
τ−→ P | Q[x̃ := ˜L] when additionally

Ψ � M
.↔ K, i.e. when the assertion Ψ entails that M and K represent the

same channel. In this way we may introduce a parametrised equational theory
over a data structure for channels. Conditions, ranged over by ϕ, can be tested
in the if construct: we have that Ψ � if ϕ then P α−→ P ′ when Ψ � ϕ and
Ψ � P

α−→ P ′. In order to represent concurrent constraints and local knowl-
edge, assertions can be used as agents: �Ψ� stands for an agent that asserts Ψ
to its environment. Assertions may contain names and these can be scoped; for
example, in P | (νa)(�Ψ� | Q) the agent Q uses all entailments provided by Ψ ,
while P only uses those that do not contain the name a.

Assertions and conditions can, in general, form any logical theory. Also the
data terms can be drawn from an arbitrary set. One of our major contributions
has been to pinpoint the precise requirements on the data terms and logic for
a calculus to be useful in the sense that the natural formulation of bisimulation
satisfies the expected algebraic laws (see Sect. 2). It turns out that it is neces-
sary to view the terms and logics as nominal [2]. This means that there is a
distinguished set of names, and for each term a well defined notion of support,
intuitively corresponding to the names occurring in the term.

1.2 Extension: Generalized Pattern Matching

In our original definition of psi-calculi [1] (called “the original psi-calculi” below),
patterns are just terms and pattern matching is defined by substitution in the

A Sorted Semantic Framework for Applied Process Calculi 105

usual way: the output object N matches the pattern X with binders x̃ iff N =
X[x̃ := ˜L]. In order to increase the generality we now introduce a function match
which takes a term N , a sequence of names x̃ and a pattern X, returning a set
of sequences of terms; the intuition is that if ˜L is in match(N, x̃,X) then N

matches the pattern X by instantiating x̃ to ˜L. The receiving agent K(λx̃)X .Q

then continues as Q[x̃ := ˜L].
As an example we consider a term algebra with two function symbols: enc

of arity three and dec of arity two. Here enc(N,n, k) means encrypting N with
the key k and a random nonce n and and dec(N, k) represents symmetric key
decryption, discarding the nonce. Suppose an agent sends an encryption, as in
M enc(N,n, k) . P . If we allow all terms to act as patterns, a receiving agent
can use enc(x, y, z) as a pattern, as in c(λx, y, z)enc(x, y, z) . Q, and in this way
decompose the encryption and extract the message and key. Using the encryption
function as a destructor in this way is clearly not the intention of a cryptographic
model. With the new general form of pattern matching, we can simply limit
the patterns to not bind names in terms at key position. Together with the
separation between patterns and terms, this allows to directly represent dialects
of the spi-calculus as in Examples 4 and 5 in Sect. 3.

Moreover, the generalization makes it possible to safely use rewrite rules such
as dec(enc(M,N,K),K) → M . In the psi-calculi framework such evaluation is
not a primitive concept, but it can be part of the substitution function, with
the idea that with each substitution all data terms are normalized according to
rewrite rules. Such evaluating substitutions are dangerous for two reasons. First,
in the original psi-calculi they can introduce ill-formed input prefixes. The input
prefix M(λx̃)N is well-formed when x̃ ⊆ n(N), i.e. the names x̃ must all occur
in N ; a rewrite of the well-formed M(λy)dec(enc(N, y, k), k) . P to M(λy)N .P
yields an ill-formed agent when y does not appear in N . Such ill-formed agents
could also arise from input transitions in some original psi-calculi; with the
current generalization preservation of well-formedness is guaranteed.

Second, in the original psi-calculi there is a requirement that a substitution
of ˜L for x̃ in M must yield a term containing all names in ˜L whenever x̃ ⊆ n(M).
The reason is explained at length in [1]; briefly put, without this requirement the
scope extension law is unsound. If rewrites such as dec(enc(M,N,K),K) → M
are performed by substitutions this requirement is not fulfilled, since a substi-
tution may then erase the names in N and K. However, a closer examination
reveals that this requirement is only necessary for some uses of substitution. In
the transition

M(λx̃)N.P
K N [x̃:=˜L]−−−−−−−→ P [x̃ := ˜L]

the non-erasing criterion is important for the substitution above the arrow
(N [x̃ := ˜L]) but unimportant for the substitution after the arrow (P [x̃ := ˜L]).
In the present paper, we replace the former of these uses by the match function,
where a similar non-erasing criterion applies. All other substitutions may safely
use arbitrary rewrites, even erasing ones.

106 J. Borgström et al.

1.3 Extension: Sorting

Applied process calculi often make use of a sort system. The applied pi-calculus
[3] has a name sort and a data sort; terms of name sort must not appear as
subterms of terms of data sort. It also makes a distinction between input-bound
variables (which may be substituted) and restriction-bound names (which may
not). The pattern-matching spi-calculus [4] uses a sort of patterns and a sort of
implementable terms; every implementable term can also be used as a pattern.

To represent such calculi, we admit a user-defined sort system on names,
terms and patterns. Substitutions are only well-defined if they conform to the
sorting discipline. To specify which terms can be used as channels, and which
values can be received on them, we use compatibility predicates on the sorts
of the subject and the object in input and output prefixes. The conditions for
preservation of sorting by transitions (subject reduction) are very weak, allowing
for great flexibility when defining instances.

The restriction to well-sorted substitution also allows to avoid “junk”: terms
that exist solely to make substitutions total. A prime example is representing
the polyadic pi-calculus as a psi-calculus. The terms that can be transmitted
between agents are tuples of names. Since a tuple is a term it can be substituted
for a name, even if that name is already part of a tuple. The result is that the
terms must admit nested tuples of names, which do not occur in the original
calculus.

1.4 Related Work

Pattern-matching is in common use in programming languages (e.g. Lisp, ML).
LINDA [5] uses pattern-matching when receiving from a tuple space. The
pattern-matching spi-calculus limits which variables may be binding in a pattern
in order to match encrypted messages without binding unknown keys (cf. Exam-
ple 5). In all these cases, the pattern matching is defined by substitution in the
usual way. In more recent languages, such as Scala and F#, pattern matching
may involve computation, similarly to this paper.

The Kell calculus [6] also uses pattern languages equipped with a match
function. However, in the Kell calculus the channels are single names and appear
as part of patterns, patterns may match multiple communications simultaneously
(à la join calculus), and pattern variables only match names (not composite
messages) making forwarding and partial decomposition impossible.

Sorts for the pi-calculus were first described by Milner [7]. Hüttel’s typed
psi-calculi [8] admit a family of dependent type systems, capable of capturing a
wide range of earlier type systems for pi-like calculi formulated as instances of
psi-calculi. However, the term language of typed psi-calculi is required to be a
free term algebra (and without name binders); it uses only the standard notions
of substitution and matching, and does not admit any computation on terms.
The sophisticated type system of typed psi-calculi is intended for fine-grained
control of the behaviour of processes, while we focus on an earlier step: the
creation of a calculus that is as close to the modeller’s intent as possible. Indeed,

A Sorted Semantic Framework for Applied Process Calculi 107

sorted psi-calculi gives a formal account of the separation between variables
and names in typed psi-calculi, and Hüttel’s claim that “the set of well-[sorted]
terms is closed under well-[sorted] substitutions, which suffices”. Furthermore, we
prove meta-theoretical results including preservation of well-formedness under
structural equivalence; no such results exist for typed psi-calculi.

In the applied pi-calculus [3] the data language is a term algebra modulo an
equational logic, which is suitable for modelling deterministic computation only.
ProVerif [9] is a specialised tool for security protocol verification in an extension
of applied pi, including a pattern matching construct. Its implementation allows
pattern matching of tagged tuples modulo a user-defined rewrite system; this
is strictly less general than the psi-calculus pattern matching described in this
paper (cf. Example 2).

Fournet et al. [10] add a general authentication logic to a process calculus
with destructor matching; the authentication logic is only used to specify pro-
gram correctness, and do not influence the operational semantics in any way.
A comparison of expressiveness to calculi with communication primitives other
than binary directed communication, such as the concurrent pattern calculus [11]
and the join-calculus [12], would be interesting. We here inherit positive results
from the pi calculus, such as the encoding of the join-calculus.

1.5 Results and Outline

In Sect. 2 we define psi-calculi with the above extensions and explain the neces-
sary change to the semantics. A formal account of the whole operational seman-
tics and bisimulations can be found in an appendix. Our results are the usual
algebraic properties of bisimilarity, preservation of well-formedness, and subject
reduction.

We demonstrate the expressiveness of our generalization in Sect. 3 by directly
representing calculi with advanced data structures and computations on them,
even nondeterministic reductions.

2 Definitions

Psi-calculi are based on nominal data types. A nominal data type is similar to
a traditional data type, but can also contain binders and identify alpha-variants
of terms. Formally, the only requirements are related to the treatment of the
atomic symbols called names as explained below. In this paper, we consider
sorted nominal datatypes, where names may have different sorts.

We assume a set of sorts S. Given a countable set of sorts for names SN ⊆ S,
we assume countably infinite pair-wise disjoint sets of atomic names Ns, where
s ∈ SN . The set of all names, N = ∪sNs, is ranged over by a, b, . . . , x, y, z. We
write x̃ for a tuple of names x1, . . . , xn and similarly for other tuples, and x̃
stands for the set of names {x1, . . . , xn} if used where a set is expected.

A sorted nominal set [2,13] is a set equipped with name swapping functions
written (a b), for any sort s and names a, b ∈ Ns, i.e. name swappings must

108 J. Borgström et al.

respect sorting. An intuition is that for any member T it holds that (a b) ·T is T
with a replaced by b and b replaced by a. The support of a term, written n(T), is
intuitively the set of names affected by name swappings on T . This definition of
support coincides with the usual definition of free names for abstract syntax trees
that may contain binders. We write a#T for a �∈ n(T), and extend this to finite
sets and tuples by conjunction. A function f is equivariant if (a b)(f(T)) =
f((a b)T) always. A nominal data type is a nominal set together with some
functions on it, for instance a substitution function.

2.1 Original Psi-calculi Parameters

Sorted psi-calculi is an extension of the original psi-calculi framework [1].

Definition 1 (Original psi-calculus parameters). The psi-calculus parame-
ters from the original psi-calculus include three nominal data types: (data) terms
M,N ∈ T, conditions ϕ ∈ C, and assertions Ψ ∈ A; and four equivariant opera-
tors: channel equivalence .↔ : T×T → C, assertion composition ⊗ : A×A → A,
the unit assertion 1, and the entailment relation � ⊆ A × C.

The binary functions .↔,⊗ and the relation � above will be used in infix form.
Two assertions are equivalent, written Ψ
 Ψ ′, if they entail the same condi-

tions, i.e. for all ϕ we have that Ψ � ϕ ⇔ Ψ ′ � ϕ. We impose certain requisites
on the sets and operators. In brief, channel equivalence must be symmetric and
transitive, the assertions with (⊗,1) must form an abelian monoid modulo
,
and ⊗ must be compositional w.r.t.
 (i.e. Ψ1
 Ψ2 =⇒ Ψ ⊗ Ψ1
 Ψ ⊗ Ψ2). For
details see [1].

2.2 New Parameters for Generalized Pattern-Matching

To the parameters of the original psi-calculi we add patterns X,Y , that are
used in input prefixes, a function vars which yields the possible combinations of
binding names in the pattern, and a pattern-matching function match, which is
used when the input takes place. Intuitively, an input pattern (λx̃)X matches a
message N if there are ˜L ∈ match(N, x̃,X); the receiving agent then continues
after substituting ˜L for x̃. If match(N, x̃,X) = ∅ then (λx̃)X does not match N ;
if |match(N, x̃,X)| > 1 then one of the matches will be non-deterministically
chosen. Below, we use “variable” for names that can be bound in a pattern.

Definition 2 (Psi-calculus parameters for pattern-matching). The psi-
calculus parameters for pattern-matching include the nominal data type X of
(input) patterns, ranged over by X,Y , and the two equivariant operators

match : T × N ∗ × X → Pfin(T∗) Pattern matching
vars : X → Pfin(Pfin(N)) Pattern variables

The vars operator gives the possible (finite) sets of names in a pattern which
are bound by an input prefix. For example, an input prefix with a pairing pat-
tern 〈x, y〉 may bind both x and y, only one of them, or none, so vars(〈x, y〉) =

A Sorted Semantic Framework for Applied Process Calculi 109

{{x, y}, {x}, {y}, {}}. This way, we can let the input prefix c(λx)〈x, y〉 only
match pairs where the second argument is the name y. To model a calculus
where input patterns cannot be selective in this way, we may instead define
vars(〈x, y〉) = {{x, y}}. This ensures that input prefixes that use the pattern
〈x, y〉 must be of the form M(λx, y)〈x, y〉, where both x and y are bound. Another
use for vars is to exclude the binding of terms in certain positions, such as the
keys of cryptographic messages (cf. Example 5).

Requirements on vars and match are given below in Definition 5. Note that
the four data types T, C, A and X are not required to be disjoint. In most of
the examples in this paper, the patterns X is a subset of the terms T.

2.3 New Parameters for Sorting

To the parameters defined above we add a sorting function and four sort com-
patibility predicates.

Definition 3 (Psi-calculus parameters for sorting). The psi-calculus para-
meters for sorting include the sorting function sort : N � T � X → S, and the
four compatibility predicates

∝ ⊆ S × S Can be used to receive
∝ ⊆ S × S Can be used to send
� ⊆ S × S Can be substituted by

Sν ⊆ S Can be bound by name restriction

The sort operator gives the sort of a name, term or pattern; on names we
require that sort(a) = s iff a ∈ Ns. The sort compatibility predicates are used
to restrict where terms and names of certain sorts may appear in processes.
Terms of sort s can be used to send values of sort t if s ∝ t. Dually, a term of
sort s can be used to receive with a pattern of sort t if s ∝ t. A name a can
be used in a restriction (νa) if sort(a) ∈ Sν . If sort(a) � sort(M) we can
substitute the term M for the name a. In most of our examples, � is a subset of
the equality relation. These predicates can be chosen freely, although the set of
well-formed substitutions depends on �, as detailed in Definition 4 below.

2.4 Substitution and Matching

We require that each datatype is equipped with an equivariant substitution func-
tion, which intuitively substitutes terms for names. The requisites on substitution
differ from the original psi-calculi as indicated in the Introduction. Substitutions
must preserve or refine sorts, and bound pattern variables must not be removed
by substitutions.

We define a subsorting preorder ≤ on S as s1 ≤ s2 if s1 can be used as a
channel or message whenever s2 can be: formally s1 ≤ s2 iff ∀t ∈ S.(s2 ∝ t ⇒
s1 ∝ t) ∧ (s2 ∝ t ⇒ s1 ∝ t) ∧ (t ∝ s2 ⇒ t ∝ s1) ∧ (t ∝ s2 ⇒ t ∝ s1). This
relation compares sorts of terms, and so does not have any formal relationship
to � (which relates the sort of a name to the sort of a term).

110 J. Borgström et al.

Definition 4 (Substitution). If ã is a sequence of distinct names and ˜N is
an equally long sequence of terms such that sort(ai) � sort(Ni) for all i, we
say that [ã := ˜N] is a substitution. Substitutions are ranged over by σ.

For each data type among T,A,C we define substitution on elements T of
that data type as follows: we require that Tσ is an element of the same data
type, and that if (ã ˜b) is a (bijective) name swapping such that ˜b#T, ã then
T [ã := ˜N] = ((ã ˜b).T)[˜b := ˜N] (alpha-renaming of substituted variables). For
terms we additionally require that sort(Mσ) ≤ sort(M).

For substitution on patterns X ∈ X, we require that if x̃ ∈ vars(X) and x̃#σ
then Xσ ∈ X and sort(Xσ) ≤ sort(X) and x̃ ∈ vars(Xσ) and alpha-
renaming of substituted variables (as above) holds.

Intuitively, the requirements on substitutions on patterns ensure that a sub-
stitution on a pattern with binders ((λx̃)X)σ with x̃ ∈ vars(X) and x̃#σ yields
a pattern (λx̃)Y with x̃ ∈ vars(Y). As an example, consider the pair patterns
discussed above with X = {〈x, y〉 : x �= y} and vars(〈x, y〉) = {{x, y}}. We can
let 〈x, y〉σ = 〈x, y〉 when x, y#σ. Since vars(〈x, y〉) = {{x, y}} the pattern 〈x, y〉
in a well-formed agent will always occur directly under the binder (λx, y), i.e. in
(λx, y)〈x, y〉, and here a substitution for x or y will have no effect. It therefore
does not matter what e.g. 〈x, y〉[x := M] is, since it will never occur in deriva-
tions of transitions of well-formed agents. We could think of substitutions as
partial functions which are undefined in such cases; formally, since substitutions
are total, the result of this substitution can be assigned an arbitrary value.

Matching must be invariant under renaming of pattern variables, and the
substitution resulting from a match must not contain any names that are not
from the matched term or the pattern:
Definition 5 (Generalized pattern matching). For the function match we
require that if x̃ ∈ vars(X) are distinct and ˜N ∈ match(M, x̃,X) then it must
hold that [x̃ := ˜N] is a substitution, that n(˜N) ⊆ n(M)∪ (n(X)\ x̃), and that for
all name swappings (x̃ ỹ) we have ˜N ∈ match(M, ỹ, (x̃ ỹ)X) (alpha-renaming
of matching).

In the original psi-calculi equivariance of matching is imposed as a require-
ment on substitution on terms, but there is no requirement that substitutions
preserve pattern variables. For this reason, the original psi semantics does not
preserve the well-formedness of agents (an input prefix M(λx̃)N .P is well-
formed when x̃ ⊆ n(N)), although this is assumed by the operational seman-
tics [1]. In contrast, the semantics of pattern-matching psi-calculi does preserve
well-formedness, as shown below in Theorem 1.

In many process calculi, and also in the symbolic semantics of psi [14], the
input construct binds a single variable. This is a trivial instance of pattern
matching where the pattern is a single bound variable, matching any term.

Example 1 Given values for the other requisites, we can take X = N with
vars(a) = {a}, meaning that the pattern variable must always occur bound,
and match(M,a, a) = {M} if sort(a) � sort(M). On patterns we define sub-
stitution as aσ = a when a#σ.

A Sorted Semantic Framework for Applied Process Calculi 111

2.5 Agents

Definition 6 (Agents). The agents, ranged over by P,Q, . . ., are of the fol-
lowing forms.

M N.P Output
M(λx̃)X.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
�Ψ� Assertion

In the Input any name in x̃ binds its occurrences in both X and P , and in
the Restriction a binds in P. An assertion is guarded if it is a subterm of an
Input or Output. An agent is well-formed if, for all its subterms, in a replication
!P there are no unguarded assertions in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn

there are no unguarded assertion in any Pi. Substitution on agents is defined
inductively on their structure, using the substitution function of each datatype
based on syntactic position, avoiding name capture.

In comparison to [1] we restrict the syntax of well-formed agents by imposing
requirements on sorts: the subjects and objects of prefixes must have compatible
sorts, and restrictions may only bind names of a sort in Sν .

Definition 7. In sorted psi-calculi, an agent is well-formed if additionally the
following holds for all its subterms. In an Output M N.P we require that sort(M)
∝ sort(N). In an Input M(λx̃)X.P we require that x̃ ∈ vars(X) is a tuple of
distinct names and sort(M) ∝ sort(X). In a Restriction (νa)P we require that
sort(a) ∈ Sν .

The output prefix M N.P sends N on a channel that is equivalent to M . Dually,
M(λx̃)X.P receives a message matching the pattern X from a channel equivalent
to M . A non-deterministic case statement case ϕ1 : P1 [] · · · [] ϕn : Pn executes
one of the branches Pi where the corresponding condition ϕi holds, discarding
the other branches. Restriction (νa)P scopes the name a in P ; the scope of a may
be extruded if P communicates a data term containing a. A parallel composition
P | Q denotes P and Q running in parallel; they may proceed independently or
communicate. A replication !P models an unbounded number of copies of the
process P . The assertion �Ψ� contributes Ψ to its environment. We often write
if ϕ then P for case ϕ : P , and nothing or 0 for the empty case statement
case.

2.6 Semantics and Bisimulation

The semantics of a psi-calculus is defined inductively as a structural operation
semantics yielding a labelled transition relation. The full definition can be found

112 J. Borgström et al.

in our earlier work [1]. We here only comment on the one change necessary to
accommodate the generalized pattern matching. The original input rule reads

Ψ � M
.↔ K

Ψ � M(λỹ)X.P
K X[ỹ:=˜L]−−−−−−−→ P [ỹ := ˜L]

and means that the instantiating substitution [ỹ := ˜L] is applied both in the
transition label and in the agent after the transition. Our new input rule is

Ψ � M
.↔ K ˜L ∈ match(N, ỹ,X)

Ψ � M(λỹ)X.P
K N−−−→ P [ỹ := ˜L]

Here the matching with the transition label and the substitution applied to the
following agent may be different. The match predicate determines both the
former (by designating the term N) and the latter (by designating the substitu-
tion), but there is no requirement on how they relate. As explained in Sect. 1.2
this means we can introduce evaluation of terms in the substitution or in the
matching.

Theorem 1 (Preservation of well-formedness). If P is well-formed, then

Pσ is well-formed, and if Ψ � P
α−→ P ′ then P ′ is well-formed.

Proof The first part is by induction on P . The interesting case is input M(λx̃)
X.Q: assume that Q is well-formed, that x̃ ∈ vars(X), that sort(M) ∝ sort(X)
and that x̃#σ. By induction Qσ is well-formed. By sort preservation we get
sort(Mσ) ≤ sort(M), so sort(Mσ) ∝ sort(X). By preservation of patterns
by non-capturing substitutions we have that x̃ ∈ vars(Xσ) and sort(Xσ) ≤
sort(X), so sort(Mσ) ∝ sort(Xσ). The second part is by induction on the
transition rules, using part 1 in the In rule.

Note that well-formedness implies conformance to the sorting discipline; there-
fore this theorem shows a kind of subject reduction property.

The definition of strong and weak bisimulation and their algebraic properties
are unchanged from our previous work [1]. The results can be summarized as
follows:

Theorem 2 (Properties of bisimulation). All results on bisimulation estab-
lished in [1] and [15] still hold in sorted psi-calculi with generalized matching.

Theorem 2 has been formally verified in Isabelle/Nominal by adapting our
existing proof scripts. The main difference is in the input cases of inductive
proofs. This represents no more than two days of work, with the bulk of the effort
going towards proving a crucial technical lemma stating that transitions do not
invent new names with the new pattern matching. We have also machine-checked
the proof of Theorem 1. Unfortunately, in Isabelle/Nominal there are currently
no facilities to reason parametrically over the set of name sorts. Therefore the
mechanically checked proofs only apply to psi-calculi with a trivial sorting (a
single sort that is admitted everywhere); we complement them with manual
proofs to extend these to arbitrary sortings.

A Sorted Semantic Framework for Applied Process Calculi 113

3 Examples

Several well-known process algebras can be directly represented as a sorted psi-
calculus by instantiating the parameters in the right way. With this we mean
that the syntax is isomorphic and that the operational semantics is exactly
preserved in a strong operational correspondence modulo strong bisimulation.
There is no need for elaborate coding schemes and the correspondence proofs
are straightforward.
Theorem 3 (Process algebra representations). CCS with value passing
[16], the unsorted and the sorted polyadic pi-calculus [7,17], and the polyadic syn-
chronization pi-calculus [18] can all be directly represented as sorted psi-calculi.

The list can certainly be made longer, though each process algebra currently has
a separate definition and therefore requires a separate formal proof. For example,
a version of LINDA [5] can easily be obtained as a variant of the polyadic pi-
calculus. To illustrate the technique, the only difference between polyadic pi-
calculus and polyadic synchronization pi-calculus is about admitting tuples of
names in prefix subjects.

More interestingly we demonstrate that we can accommodate a variety of
structures for communication channels; in general these can be any kind of data,
and substitution can include any kind of computation on these structures. This
indicates that the word “substitution” may be a misnomer — a better word may
be “effect” — though we keep it to conform with our earlier work. The examples
below use default values for the parameters where A = {1}, C = {�,⊥} and
M

.↔ N = � iff M = N , otherwise ⊥. We let 1 � � and 1 �� ⊥. We also let
∝ = ∝ = S × S, Sν = SN , and let � be the identity on S, unless otherwise
defined. Finally we let match(M, x̃,X) = ∅ where not otherwise defined, we
write � for the subterm (non-strict) partial order, and we use the standard
notion of simultaneous substitution unless otherwise stated.
Example 2 (Convergent rewrite system on terms). We here consider determin-
istic computations specified using a rewrite system on terms containing names.
This example highlights how a notion of substitution restricts the possible choices
for vars(X); see Examples 3 and 4 for two concrete instances.

Let Σ be a sorted signature, and · ⇓ be normalization with respect to a
convergent rewrite system on the nominal term algebra over N generated by
the signature Σ. We write ρ for sort-preserving capture-avoiding simultaneous
substitutions {˜M/̃a} where every Mi is in normal form; here n(ρ) = n(˜M, ã).
A pattern (term) X is stable if for all ρ, Xρ⇓ = Xρ. The patterns include the
stable patterns Y and all instances X thereof (i.e., where X = Y ρ); such an X
can bind any names occurring in Y but not in ρ.

REWRITE(⇓)
T = X = range(⇓)
M [ỹ := ˜L] = M{˜L/̃y}⇓
vars(X) =

⋃{P(n(Y) \ n(ρ)) : Y stable ∧ X = Y ρ}
match(M, x̃,X) = {˜L : M = X{˜L/̃x}}

114 J. Borgström et al.

As a simple instance of Example 2, we may consider Peano arithmetic.

Example 3 (Peano arithmetic). Let S = SN = {nat, chan}. We take the signa-
ture consisting of the function symbols zero : nat, succ : nat → nat and plus :
nat × nat → nat. The rewrite rules plus(K, succ(M)) → plus(succ(K),M)
and plus(K, zero) → K induce a convergent rewrite system ⇓Peano.

The stable terms are those that do not contain any occurrence of plus. The
construction of Example 2 yields that x̃ ∈ vars(X) if x̃ = ε (which matches
only the term X itself), or if x̃ = a and X = succn(a).

Writing i for succi(zero), the agent (νa)(a 2 | a(λy)succ(y) . c plus(3, y))
of REWRITE(⇓Peano) has one visible transition, with the label c 4. In partic-
ular, the object of the label is plus(3, y)[y := 1] = plus(3, y){1/y}⇓Peano = 4.

Example 4 (Symmetric encryption). We can also consider variants on the con-
struction in Example 2, such as a simple Dolev-Yao style [19] cryptographic mes-
sage algebra for symmetric cryptography, where we ensure that the encryption
keys of received encryptions can not be bound in input patterns, in agreement
with cryptographic intuition.

Let S = SN = {message, key}, and consider the term algebra over the signa-
ture with the two function symbols enc, dec of sort message × key → message.
The rewrite rule dec(enc(M,K),K) → M induces a convergent rewrite system
⇓enc, where the terms not containing dec are stable.

The construction of Example 2 yields that x̃ ∈ vars(X) if x̃ ⊆ n(X) are
pair-wise different and no xi occurs as a subterm of a dec in X. This construc-
tion would permit to bind the keys of an encrypted message upon reception,
e.g. a(λm, k)enc(m, k) . P would be allowed although it does not make crypto-
graphic sense. Therefore we further restrict vars(X) to those sets not containing
names that occur in key position in X, thus disallowing the binding of k above.

SYMSPI
As REWRITE(⇓enc), except
vars(X) = P(n(X) \ {a : a � dec(Y1, Y2) � X ∨

(a � Y2 ∧ enc(Y1, Y2) � X)})

As an example, the agent (νa, k)(a enc(enc(M, l), k) | a(λy)enc(y, k) . c dec(y, l))
has a visible transition with label c M .

Example 5 (Pattern-matching spi-calculus). A more advanced version of Exam-
ple 4 is the treatment of data in the pattern-matching spi-calculus [4], to which
we refer for more examples and motivations of the definitions below. Features
of the calculus includes a non-homomorphic definition of substitution that does
not preserve sorts, and a sophisticated way of computing permitted pattern vari-
ables. This example highlights the flexibility of sorted psi-calculi in that such a
specialized modelling language can be directly represented, in a form that is very
close to the original.

A Sorted Semantic Framework for Applied Process Calculi 115

We start from the term algebra TΣ over the unsorted signature Σ consist-
ing of the function symbols (), (·, ·), eKey(·), dKey(·), enc(·, ·) and enc−1(·, ·).
The operation enc−1 is “encryption with the inverse key”, which is only per-
mitted to occur in patterns. We add a sort system on TΣ where impl denotes
implementable terms not containing enc−1, and pat those that may only be used
in patterns. The sort ⊥ denotes ill-formed terms, which do not occur in well-
formed processes. Substitution is defined homomorphically on the term algebra,
except for enc−1(M1,M2)σ which is enc(M1σ, eKey(N)) when M2σ = dKey(N),
and enc−1(M1σ,M2σ) otherwise. We let � ⊂ P(TΣ) × P(TΣ) be deducibility in
the Dolev-Yao message algebra (for the precise definition, see [4]). The definition
of vars(X) below allows to bind only those names that can be deduced from
X and the other names occurring in X. This excludes binding an unknown key,
like in Example 4.

PMSPI
T = X = TΣ

SN = {impl} S = {impl, pat,⊥}
� = ∝ = {(impl, impl)}
∝ = {(impl, impl), (impl, pat)}
sort(M) = impl if ∀N1, N2. enc−1(N1, N2) �� M
sort(M) = ⊥ if ∃N1, N2. enc−1(N1, dKey(N2)) � M
sort(M) = pat otherwise
match(M, x̃,X) = {˜L : M = X[x̃ := ˜L]}
vars(X) = {S ⊆ n(X) : ((n(X) \ S) ∪ {X}) � S}

As an example, consider the following transitions in PMSPI:

(νa, k, l)(a enc(dKey(l), eKey(k)).a enc(M, eKey(l))

| a(λy)enc(y, eKey(k)) . a(λz)enc−1(z, y) . c z)
τ−→ (νa, k, l)(a enc(M, eKey(l)) | a(λz)enc(z, eKey(l)) . c z)

τ−→ (νa, k, l)c M.

Note that σ = [y := dKey(l)] resulting from the first input changed the sort of
the second input pattern: sort(enc−1(z, y)) = pat, but sort(enc−1(z, y)σ) =
sort(enc(z, eKey(l))) = impl. However, this is permitted by Definition 4, since
impl ≤ pat.

Example 6 (Nondeterministic computation). The previous examples considered
total deterministic notions of computation on the term language. Here we con-
sider a data term language equipped with partial non-deterministic evaluation: a
lambda calculus with the erratic choice operator ·�·. Due to the non-determinism
and partiality, evaluation cannot be part of the substitution function. Instead,
the match function collects all evaluations of the received term, which are

116 J. Borgström et al.

non-deterministically selected from by the In rule. This example also highlights
the use of object languages with binders, a common application of nominal logic.

We let substitution on terms be the usual capture-avoiding syntactic replace-
ment, and define reduction contexts R ::= [] | R M | (λx.M) R. Reduction →
is the smallest pre-congruence for reduction contexts that contain the rules for
β-reduction (λx.M N → M [x := N]) and · � · (namely M1 � M2 → Mi if i ∈
{1, 2}). We use the single-name patterns of Example 1, but include evaluation in
matching.

NDLAM
SN = S = {s} X = N
M ::= a | M M | λx.M | M � M

where x binds into M in λx.M
match(M,x, x) = {N : M →∗ N �→}

As an example, the agent (νa)(a(y) . c y .0 | a ((λx.x x) � (λx.x)) .0) has two
visible transitions, with labels c λx.x x and c λx.x.

4 Conclusions and Further Work

We have described two features that taken together significantly improve the
precision of applied process calculi: generalised pattern matching and substitu-
tion, which allow us to model computations on an arbitrary data term language,
and a sort system which allows us to remove spurious data terms from con-
sideration and to ensure that channels carry data of the appropriate sort. The
well-formedness of processes is thereby guaranteed to be preserved by transitions.
We have given examples of these features, ranging from the simple polyadic pi-
calculus to the highly specialized pattern-matching spi-calculus, in the psi-calculi
framework.

The meta-theoretic results carry over from the original psi formulations, and
many have been machine-checked in Isabelle. We have also developed a tool
for sorted psi-calculi [20], the Psi-calculi Workbench (Pwb), which provides an
interactive simulator and automatic bisimulation checker. Users of the tool need
only implement the parameters of their psi-calculus instances, supported by a
core library.

Future work includes developing a symbolic semantics with pattern matching.
For this, a reformulation of the operational semantics in the late style, where
input objects are not instantiated until communication takes place, is necessary.
We also aim to extend the use of sorts and generalized pattern matching to
other variants of psi-calculi, including higher-order psi calculi [21] and reliable
broadcast psi-calculi [22]. As mentioned in Sect. 2.6, further developments in
Nominal Isabelle are needed for mechanizing theories with arbitrary but fixed
sortings.

A Sorted Semantic Framework for Applied Process Calculi 117

References

1. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. LMCS 7(1:11) (2011)

2. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186, 165–193 (2003)

3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL, pp. 104–115. ACM, January 2001

4. Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Inf. Comput. 204(8), 1195–
1263 (2006)

5. Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112
(1985)

6. Schmitt, A., Stefani, J.-B.: The KELL calculus: a family of higher-order distributed
process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp.
146–178. Springer, Heidelberg (2005)

7. Milner, R.: The polyadic π-calculus: a tutorial. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (eds.) Logic and Algebra of Specification. NATO ASI,
vol. 94, pp. 203–246. Springer, Heidelberg (1993)

8. Hüttel, H.: Typed ψ-calculi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 265–279. Springer, Heidelberg (2011)

9. Blanchet, B.: Using Horn clauses for analyzing security protocols. In Cortier, V.,
Kremer, S., eds.: Formal Models and Techniques for Analyzing Security Protocols.
Cryptology and Information Security Series, vol. 5, pp. 86–111. IOS Press (2011)

10. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg
(2005)

11. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude,
C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer,
Heidelberg (2010)

12. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceed-
ings of the POPL, pp. 372–385 (1996)

13. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects Comput. 13, 341–363 (2001)

14. Johansson, M., Victor, B., Parrow, J.: Computing strong and weak bisimulations
for psi-calculi. J. Logic Algebraic Program. 81(3), 162–180 (2012)

15. Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-
calculi. In: Proceedings of LICS 2010, pp. 322–331. IEEE (2010)

16. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

17. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D thesis, University of Edinburgh, CST-99-93 (1993)

18. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
π-calculus. Nord. J. Comput. 10(2), 70–98 (2003)

19. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–208 (1983)

20. Borgström, J., Gutkovas, R., Rodhe, I., Victor, B.: A parametric tool for applied
process calculi. In: Proceedings of the 13th International Conference on Application
of Concurrency to System Design (ACSD’13). IEEE (2013)

21. Parrow, J., Borgström, J., Raabjerg, P., Åman Pohjola, J.: Higher-order psi-calculi.
Mathematical Structures in Computer Science FirstView (June 2013)

118 J. Borgström et al.

22. Åman Pohjola, J., Borgström, J., Parrow, J., Raabjerg, P., Rodhe, I.: Negative
premises in applied process calculi. Technical Report 2013-014, Department of
Information Technology, Uppsala University (2013)

	A Sorted Semantic Framework for Applied Process Calculi (Extended Abstract)
	1 Introduction
	1.1 Background: Psi-calculi
	1.2 Extension: Generalized Pattern Matching
	1.3 Extension: Sorting
	1.4 Related Work
	1.5 Results and Outline

	2 Definitions
	2.1 Original Psi-calculi Parameters
	2.2 New Parameters for Generalized Pattern-Matching
	2.3 New Parameters for Sorting
	2.4 Substitution and Matching
	2.5 Agents
	2.6 Semantics and Bisimulation

	3 Examples
	4 Conclusions and Further Work
	References

