
Software and System Modeling manuscript No.
(will be inserted by the editor)

Broadcast Psi-calculi

with an Application to Wireless Protocols

Johannes Borgström1, Shuqin Huang2, Magnus Johansson1, Palle
Raabjerg1, Björn Victor1, Johannes Åman Pohjola1, Joachim
Parrow1

1 Department of Information Technology, Uppsala University, Sweden
2 Peking University, China

March 5, 2013

Abstract Psi-calculi is a parametric framework for extensions of the pi-
calculus, with arbitrary data structures and logical assertions for facts about
data. In this paper we add primitives for broadcast communication in or-
der to model wireless protocols. The additions preserve the purity of the
psi-calculi semantics, and we formally prove the standard congruence and
structural properties of bisimilarity. We demonstrate the expressive power
of broadcast psi-calculi by modelling the wireless ad-hoc routing protocol
LUNAR and verifying a basic reachability property.

1 Introduction

Psi-calculi is a parametric framework for extensions of the pi-calculus, with
arbitrary data structures and logical assertions for facts about data. In
earlier papers we have shown how psi-calculi can capture the same phe-
nomena as other proposed extensions of the pi-calculus such as the applied
pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint
pi-calculus, and calculi with polyadic communication channels or pattern
matching. Psi-calculi can be even more general, for example by allowing
structured channels, higher-order formalisms such as the lambda calculus
for data structures, and predicate logic for assertions [5].

In psi-calculi (described in Section 2) the purity of the semantics is
on par with the original pi-calculus, the generality and expressiveness ex-
ceeds many earlier extensions of the pi-calculus, and the meta-theory is
proved correct once and for all using the interactive theorem prover Is-
abelle/Nominal [30]. The communication paradigm in psi-calculi is binary:
for each event there is one sender and one receiver, just as in the pi-calculus.

2 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

In several areas, e.g. wireless communications and hardware data buses, a
natural paradigm is broadcast, where one transmission can be received by
several processes. Broadcast communication cannot be uniformly encoded
in the pi-calculus [7].

In this paper we extend the psi-calculi framework with primitives for
synchronous unreliable broadcast. These require new operational actions
and rules, and new connectivity predicates. In Section 3.1, we formally prove
the congruence properties of bisimilarity and the soundness of structural
equivalence laws using the Isabelle/Nominal theorem prover.

The connectivity predicates allow us to model systems with limited
reachability, for instance where a transmitter only reaches nodes within
a certain range, and systems with changing reachability, for instance due to
physical mobility of nodes. In Section 4, we present a technique for treating
different generations of connectivity information. Broadcast channels can
be globally visible or have limited scope. Scoped channels can be protected
from externally imposed connectivity changes, while permitting connectiv-
ity changes by processes within the scope of the channel. One of our main
contributions is precise requirements that the connectivity predicates must
satisfy, in order to model scoped broadcasts with dynamic connectivity,
while still satisfying the meta-theoretical results of Section 3.1.

We demonstrate the expressive power of the resulting framework in Sec-
tion 5, where we provide a model of the LUNAR protocol for routing in
ad-hoc wireless networks [28]. The model follows the specification closely,
and demonstrates several features of the psi-calculi framework: both uni-
cast and broadcast communication, application-specific data structures and
logics, classic unstructured channels as well as pairs corresponding to MAC
address and port selector. Our model is significantly more succinct than
earlier work [32,31] (ca 30 vs 250 lines). We show an expected basic reacha-
bility property of the model: if two network nodes, a sender and a receiver,
are both in range of a third node, but not within range of each other, the
LUNAR protocol can find a route and transparently handle the delivery of
a packet from the sender to the receiver.

We discuss related work on process calculi for wireless broadcast in Sec-
tion 6, and conclude and present ideas for future work in Section 7.

This paper is an extended version of [6] that adds clarifications, proofs,
and elaborated examples of dynamic topology management.

2 Psi-calculi

This section is a brief recapitulation of psi-calculi; for a more extensive
treatment including motivations and examples see [4,5].

We assume a countably infinite set of atomic names N ranged over by
a, b, . . . , z. Intuitively, names will represent the symbols that can be scoped,
and also represent symbols acting as variables in the sense that they can
be subject to substitution. As a general framework for terms and other

Broadcast Psi-calculi with an Application to Wireless Protocols 3

data containing names, we work in the formalism of nominal sets [21,8].
A nominal set is an ordinary set equipped with a formal notion of what
it means for a name a to occur in an element X of the set, written a ∈
n(X) (often pronounced as “a is in the support of X”). We write a#X,
pronounced “a is fresh for X”, for a 6∈ n(X), and if A is a finite set of
names we write A#X to mean ∀a ∈ A . a#X. In the following ã means a
finite sequence of names, a1, . . . , an. The empty sequence is written ε and
the concatenation of ã and b̃ is written ãb̃. When occurring as an operand
of a set operator, ã means the corresponding set of names {a1, . . . , an}. We
also use sequences of other nominal sets in the same way. For names, we
write (ã b̃) for the name swapping that swaps each element of ã with the
corresponding element of b̃; here it is implicit that ã and b̃ have the same
length, and that the names in ã (resp. b̃) are pair-wise distinct.

A nominal datatype is a nominal set together with a set of functions
on it. In particular we shall consider substitution functions that substitute
elements for names. If X is an element of a datatype, ã is a sequence of
names without duplicates and Ỹ is an equally long sequence of elements of
possibly another datatype, the substitution X[ã := Ỹ] is an element of the
same datatype as X. Substitution is required to satisfy a law akin to alpha-
conversion: if b̃#X, ã then X[ã := T̃] = ((̃b ã) ·X)[̃b := T̃]. Intuitively, this
ensures that substitutions for bound names yield the same result no matter
which alpha-equivalent version is used.

A psi-calculus is defined by instantiating three nominal data types and
four operators:

Definition 1 (Psi-calculus parameters) A psi-calculus requires the three
(not necessarily disjoint) nominal data types: the (data) terms T, ranged
over by M,N , the conditions C, ranged over by ϕ, the assertions A, ranged
over by Ψ , and the four equivariant operators:

.↔ : T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
` ⊆ A×C Entailment

and substitution functions [ã :=M̃], substituting terms for names, on each
of T, C and A, where the substitution function on T, in addition to the
alpha-conversion-like law above, satisfies the following name preservation
law: if ã ⊆ n(M) and b ∈ n(Ñ) then b ∈ n(M [ã := Ñ]).

The binary functions above will be written in infix. Thus, if M and N
are terms then M

.↔ N is a condition, pronounced “M and N are channel
equivalent” and if Ψ and Ψ ′ are assertions then so is Ψ ⊗ Ψ ′. Also we write
Ψ ` ϕ, “Ψ entails ϕ”, for (Ψ, ϕ) ∈ `.

We say that two assertions are equivalent, written Ψ ' Ψ ′ if they entail
the same conditions, i.e. for all ϕ we have that Ψ ` ϕ⇔ Ψ ′ ` ϕ. We impose
certain requisites on the sets and operators. In brief, channel equivalence
must be symmetric and transitive, ⊗ must be compositional with regard to

4 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

', and the assertions with (⊗,1) form an abelian monoid modulo '. For
details see [4].

A frame F can intuitively be thought of as an assertion with local names:
it is of the form (νb̃)Ψ where b̃ is a sequence of names that bind into the
assertion Ψ . We use F,G to range over frames. We overload Ψ to also mean
the frame (νε)Ψ and ⊗ to composition on frames defined by (νb̃1)Ψ1 ⊗
(νb̃2)Ψ2 = (νb̃1b̃2)(Ψ1⊗Ψ2) where b̃1#b̃2, Ψ2 and vice versa. We write Ψ ⊗F
to mean (νε)Ψ ⊗ F , and (νc)((νb̃)Ψ) for (νcb̃)Ψ .

Alpha equivalent frames are identified. We define F ` ϕ to mean that
there exists an alpha variant (νb̃)Ψ of F such that b̃#ϕ and Ψ ` ϕ. We also
define F ' G to mean that for all ϕ it holds that F ` ϕ iff G ` ϕ. Intuitively
a condition is entailed by a frame if it is entailed by the assertion and does
not contain any names bound by the frame, and two frames are equivalent
if they entail the same conditions.

Definition 2 (Psi-calculus agents) Given valid psi-calculus parameters
as in Definition 1, the psi-calculus agents, ranged over by P,Q, . . ., are of
the following forms.

0 Nil
MN .P Output
M(λx̃)N .P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
(|Ψ |) Assertion

Restriction binds a in P and Input binds x̃ in both N and P . We identify
alpha equivalent agents. An assertion is guarded if it is a subterm of an
Input or Output. An agent is assertion guarded if it contains no unguarded
assertions. An agent is well-formed if in M(λx̃)N.P it holds that x̃ ⊆ n(N)
is a sequence without duplicates, that in a replication !P the agent P is
assertion guarded, and that in case ϕ1 : P1 [] · · · [] ϕn : Pn the agents Pi
are assertion guarded.

The agent case ϕ1 : P1 [] · · · [] ϕn : Pn is sometimes abbreviated as case ϕ̃ : P̃ ,
or if n = 1 as if ϕ1 then P1. Input subjects are underlined to facilitate pars-
ing of complicated expressions; in simple cases we often omit the underline.
We sometimes write M(x).P for M(λx)x.P .

The frame F(P) of an agent P is defined inductively as follows:

F(M(λx̃)N .P) = F(M N .P) = F(0) = F(case ϕ̃ : P̃) = F(!P) = 1
F((|Ψ |)) = (νε)Ψ
F(P | Q) = F(P)⊗F(Q)
F((νb)P) = (νb)F(P)

Broadcast Psi-calculi with an Application to Wireless Protocols 5

In
Ψ ` K .↔M

Ψ � M(λey)N .P
K N [ey:=eL]−−−−−−→ P [ey := eL]

Out
Ψ `M .↔ K

Ψ � M N .P
KN−−→ P

Case
Ψ � Pi

α−→ P ′ Ψ ` ϕi

Ψ � case eϕ : eP α−→ P ′

Com

Ψ ⊗ ΨP ⊗ ΨQ `M
.↔ K

ΨQ ⊗ Ψ � P
M(νea)N−−−−−→ P ′ ΨP ⊗ Ψ � Q

K N−−−→ Q′

Ψ � P | Q τ−→ (νea)(P ′ | Q′)
ea#Q

Par
ΨQ ⊗ Ψ � P

α−→ P ′

Ψ � P | Q α−→ P ′ | Q
bn(α)#Q

Scope
Ψ � P

α−→ P ′

Ψ � (νb)P
α−→ (νb)P ′

b#α, Ψ

Open
Ψ � P

M(νea)N−−−−−→ P ′

Ψ � (νb)P
M(νea∪{b})N−−−−−−−−→ P ′

b#ea, Ψ,M
b ∈ n(N)

Rep
Ψ � P | !P α−→ P ′

Ψ � !P
α−→ P ′

Table 1 Structured operational semantics. Symmetric versions of Com and Par
are elided. In the rule Com we assume that F(P) = (νebP)ΨP and F(Q) = (νebQ)ΨQ
where ebP is fresh for all of Ψ,ebQ, Q,M and P , and that ebQ is similarly fresh. In

the rule Par we assume that F(Q) = (νebQ)ΨQ where ebQ is fresh for Ψ, P and α.
In Open the expression ã ∪ {b} means the sequence ã with b inserted anywhere.

The actions ranged over by α, β are of the following three kinds:
Output M(νã)N where α ⊆ n(N), Input M N , and Silent τ . Here we refer
to M as the subject and N as the object. We define bn(M(νã)N) = ã,
and bn(α) = ∅ if α is an input or τ . We also define n(τ) = ∅ and n(α) =
n(M) ∪ n(N) for the input and output actions. As in the pi-calculus, the
output M(νã)N represents an action sending N along M and opening the
scopes of the names ã. Note in particular that the support of this action
includes ã. Thus M(νa)a and M(νb)b are different actions.

Definition 3 (Transitions)

A transition is written Ψ � P
α−→ P ′, meaning that in the environment

Ψ the well-formed agent P can do an α to become P ′. The transitions are
defined inductively in Table 1. We write P α−→ P ′ without an assertion to
mean 1 � P

α−→ P ′.

Agents, frames and transitions are identified by alpha equivalence. In a
transition the names in bn(α) bind into both the action object and the

6 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

derivative, therefore bn(α) is in the support of α but not in the support
of the transition. This means that the bound names can be chosen fresh,
substituting each occurrence in both the object and the derivative.

Definition 4 (Strong bisimulation) A strong bisimulation R is a ternary
relation on assertions and pairs of agents such that R(Ψ, P,Q) implies

1. Static equivalence: Ψ ⊗F(P) ' Ψ ⊗F(Q); and

2. Symmetry: R(Ψ,Q, P); and

3. Extension of arbitrary assertion: ∀Ψ ′. R(Ψ ⊗ Ψ ′, P,Q); and

4. Simulation: for all α, P ′ such that Ψ � P
α−→ P ′ and bn(α)#Ψ,Q,

there exists Q′ such that Ψ � Q
α−→ Q′ and R(Ψ, P ′, Q′).

We define P
.∼Ψ Q to mean that there exists a bisimulation R such that

R(Ψ, P,Q), and write .∼ for .∼1.

Strong bisimulation is preserved by all operators except input prefix and
satisfies the expected algebraic laws such as scope extension, for details
see [4,5].

3 Broadcast psi-calculi

In this section we extend the unicast psi-calculi of the previous section
with a communication paradigm for synchronous unreliable non-blocking
broadcast (suitable for modelling wireless communication). We introduce
the notion of a broadcast channel as an abstraction of relevant properties
of the transmission, such as frequency, sender location and signal strength.
Formally a broadcast channel is just a term. We assume so called connec-
tivity predicates that regulate which prefix subjects can send on or receive
from which broadcast channels. These predicates may depend on assertions
and therefore change as an agent evolves.

As an example, assume that the connectivity information Ψ allows the
sender M0 to send on the broadcast channel K, and receivers M1 and M2

to listen on K. We would then have the following transition:

Ψ � M0N.P |M1(x).Q |M2(y).R !K N−−−→ P | Q[x :=N] | R[y :=N]

Here, in one action two processes both receive the N sent along K, and
moreover the action label retains the broadcast output action !KN , meaning
that in a larger context even more processes could receive N .

Formally, we assume a psi-calculus with the following extra predicates:

Definition 5 (Extra predicates for broadcast)
.
≺ : T×T→ C Output Connectivity
.
� : T×T→ C Input Connectivity

Broadcast Psi-calculi with an Application to Wireless Protocols 7

The first predicate, M
.
≺ K, is pronounced “M is out-connected to K” and

means that an output prefix M N can result in a broadcast on channel K.
The second, K

.
� M , is pronounced “M is in-connected to K” and means

that an input prefix M(λx̃)N can receive broadcast messages from channel
K. As usual in broadcast calculi, the receivers need to be using the same
broadcast channel as the sender in order to receive a message.

As an example, we can model lookup in a routing table: if the term tab is
a list of pairs of identifiers and channels we can let Ψ ` lookup(tab, id)

.
≺ ch

be true iff (id, ch) appears in the routing table tab. We can also model
connectivity: if Ψ contains connectivity information between channels ch
and receivers n we may let Ψ ` ch

.
� rcv(n, ch) be true if n is connected

to ch according to Ψ .
In contrast to unicast connectivity, we do not require broadcast connect-

edness to be symmetric or transitive, so in particular M
.
≺ K might not

be equivalent to K
.
�M . Instead, for technical reasons related to scope ex-

tension (cf. Example 13), broadcast channels must have no greater support
than the input and output prefixes that send and receive on them.

Definition 6 (Requirements for broadcast)

1. Ψ `M
.
≺ K =⇒ n(M) ⊇ n(K)

2. Ψ ` K
.
�M =⇒ n(K) ⊆ n(M)

Definition 7 (Transitions of Broadcast Psi) To the actions of psi-
calculi we add broadcast input, written ?K N for a reception of N on K,
and broadcast output, written !K (νã)N for a broadcast of N on K, with
names ã fresh in K. As before, we omit (νã) when ã is empty, and in ex-
amples we omit N when it is not relevant. The transitions of well-formed
agents are defined inductively in Tables 2 and 1, where we let α range over
both unicast and broadcast actions.

The rule BrOut allows transmission on a broadcast channel K that
the subject M of an output prefix is out-connected to. Similarly, the rule
BrIn allows input from a broadcast channel K that the subject M of an
input prefix is in-connected to. The environmental assertion Ψ determines
if a prefix is connected to a broadcast channel and thus gives rise to a
broadcast in BrIn and BrOut. In the same way it determines if a prefix
is channel equivalent to something else and thus gives rise to a unicast in
In and Out. The same prefix could theoretically be used for both kinds of
communication, although it may be unusual to find situations where that
would be useful.

When two parallel processes both receive a broadcast on the same chan-
nel, the rule BrMerge combines the two actions. This rule is necessary
to ensure the associativity of parallel composition. After a broadcast com-
munication using BrCom, the resulting action is the original transmission.
This is different from the unicast Com rule, where a communication yields
an internal action τ . The BrOpen rule allows broadcast communication
of data containing scoped names. Rule BrClose states that a broadcast

8 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

BrOut
Ψ `M

.
≺ K

Ψ � M N .P
!K N−−−→ P

BrIn
Ψ ` K

.
�M

Ψ � M(λey)N .P
?K N [ey:=eL]−−−−−−−→ P [ey := eL]

BrMerge
ΨQ ⊗ Ψ � P

?K N−−−→ P ′ ΨP ⊗ Ψ � Q
?K N−−−→ Q′

Ψ � P | Q ?K N−−−→ P ′ | Q′

BrCom
ΨQ ⊗ Ψ � P

!K (νea)N−−−−−−→ P ′ ΨP ⊗ Ψ � Q
?K N−−−→ Q′

Ψ � P | Q !K (νea)N−−−−−−→ P ′ | Q′
ea#Q

BrOpen
Ψ � P

!K (νea)N−−−−−−→ P ′

Ψ � (νb)P
!K (νea∪{b})N−−−−−−−−−→ P ′

b#ea, Ψ,K
b ∈ n(N)

BrClose
Ψ � P

!K (νea)N−−−−−−→ P ′

Ψ � (νb)P
τ−→ (νb)(νea)P ′

b ∈ n(K)
b#Ψ

Table 2 Operational broadcast semantics. A symmetric version of BrCom is
elided. In rules BrCom and BrMerge we assume that F(P) = (νebP)ΨP and

F(Q) = (νebQ)ΨQ where ebP is fresh for P,ebQ, Q,K and Ψ , and that ebQ is fresh for

Q,ebP , P,K and Ψ .

transmission does not reach beyond its scope. This allows for broadcasting
on restricted channels. Dually, the Scope rule (of Table 1) ensures that
broadcast receivers on restricted channels cannot proceed unless a message
is sent. The Par rule allows for broadcasts to bypass a process, as in most
other broadcast calculi for wireless systems.

3.1 Meta-theory

We have developed a meta-theory for broadcast psi-calculi. Theorems 8, 10
and 11 give us assurance that any broadcast psi-calculus has a compositional
labelled bisimilarity that respects important structural laws. The proofs of
these results are mostly straightforward extensions of the corresponding
proofs for standard (unicast) psi-calculi [13,3], where some technical lem-
mas can be simplified because of the requirement of syntactic equality of
channels in rules BrCom and BrMerge. Most of the added complications
are caused by the fact that the BrCom rule defers the closing of the com-
munication to BrClose; cf. Lemma 12. The proofs [24] are formally verified
in the interactive theorem prover Isabelle/Nominal. The full formalisation
of broadcast psi-calculi amounts to ca 33 000 lines of Isabelle code, of which
about 21 000 lines are re-used from our earlier work [5].

In the following we restrict attention to well-formed agents.

Broadcast Psi-calculi with an Application to Wireless Protocols 9

Theorem 8 (Congruence properties of strong bisimulation) For all
Ψ :

P
.∼Ψ Q =⇒ P | R .∼Ψ Q | R

P
.∼Ψ Q =⇒ (νa)P .∼Ψ (νa)Q if a#Ψ

P
.∼Ψ Q =⇒ !P .∼Ψ !Q if P,Q assertion guarded

∀i.Pi
.∼Ψ Qi =⇒ case ϕ̃ : P̃ .∼Ψ case ϕ̃ : Q̃

P
.∼Ψ Q =⇒ M N .P

.∼Ψ M N .Q

(∀L̃. P [x̃ := L̃] .∼Ψ Q[x̃ := L̃]) =⇒ M(λx̃)N .P
.∼Ψ M(λx̃)N .Q

As usual in channel-passing calculi, bisimulation is not a congruence for
input prefix. We can characterise strong bisimulation congruence in the
usual way.

Definition 9 (Strong Congruence) P ∼Ψ Q iff for all sequences σ of
substitutions it holds that Pσ .∼Ψ Qσ. We write P ∼ Q for P ∼1 Q.

Theorem 10 Strong congruence ∼Ψ is a congruence for all Ψ .

The standard rules of structural equivalence are sound for bisimilarity
congruence.

Theorem 11 (Structural equivalence) Assume that a#Q, x̃,M,N, ϕ̃.
Then

case ϕ̃ : (̃νa)P ∼ (νa)case ϕ̃ : P̃ (νa)0 ∼ 0
M(λx̃)N . (νa)P ∼ (νa)M(λx̃)(N) . P Q | (νa)P ∼ (νa)(Q | P)

M N . (νa)P ∼ (νa)M N .P (νb)(νa)P ∼ (νa)(νb)P
P | (Q | R) ∼ (P | Q) | R !P ∼ P | !P

P | Q ∼ Q | P P ∼ P | 0

When proving Theorem 11 we encountered an unusual complication in
the proof of the commutativity of restriction, due to the BrClose rule.
Since this rule can insert binder sequences under name restrictions, the
simulation proof needs to allow for permutations of sequences of top-level
binders. This is the main difference in our meta-theoretical proofs as com-
pared to the original psi-calculi. We write ã ≡ b̃ to denote that the sequence
ã is a rearrangement of b̃, preserving the number of occurrences of each
name.

Lemma 12 For all Ψ, P, x, y, we have (νy)(νx)P .∼Ψ (νx)(νy)P .

Proof In standard psi-calculi, the proof of this result uses the candidate
relation S0

def
= {(Ψ, (νy)(νx)P, (νx)(νy)P) : x, y#Ψ}. Here we inductively

close this relation under restriction, yielding S:

S def
= S0 ∪ {(Ψ, (νa)P, (νa)Q) : (Ψ, P,Q) ∈ S ∧ a#Ψ}

10 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

We show that S is a bisimulation up to transitivity [25] (at every Ψ). That
is, we only require the derivatives after a simulation step to be related by
S∗, inductively defined as

S∗ def
= {(Ψ, P, P)} ∪ {(Ψ, P,R) : ∃Q. (Ψ, P,Q) ∈ S∗ ∧ (Ψ,Q,R) ∈ S}.

We have proven “up to transitivity” to be sound, i.e., every bisimulation up
to transitivity is a subset of some ordinary bisimulation.

The interesting part of the proof is in the simulation clause. We here
consider only the base case of the definition of S (i.e. S0), where we need to

prove that for all α, P ′ such that bn(α)#Ψ,Q and Ψ � (νy)(νx)P α−→ P ′

there exists a Q′ such that Ψ � (νx)(νy)P α−→ Q′ and (Ψ, P ′, Q′) ∈ S∗.
We first define a relation R that safely approximates S∗ (i.e. R ⊆ S∗)

and is easier to work with.

R def
= {(Ψ, (νã)P, (νb̃)P) : ã#Ψ ∧ ã ≡ b̃}.

By induction on the length of ã, we get that for all ã, b̃, Ψ, P such that
ã#Ψ and ã ≡ b̃ we have (Ψ, (νã)P, (νb̃)P) ∈ S∗. From this follows that the
relation R ⊆ S∗; in order to show that the derivatives (Ψ, P ′, Q′) ∈ S after
a simulation step, we instead prove (Ψ, P ′, Q′) ∈ R.
The simulation proof is by case analysis on the derivations of transitions of
(νy)(νx)P . We here focus on on the following derivation.

Scope

BrClose
Ψ � P

!M (νea)N−−−−−−→ P ′

Ψ � (νx)P τ−→ (νx)(νã)P ′
x ∈ n(M), x#Ψ

Ψ � (νy)(νx)P τ−→ (νy)(νx)(νã)P ′
y#τ, Ψ

We assume that ã#(Ψ, P,M, x, y). There are three cases to consider.

1. y#(!M (νã)N): We have the following transition.

BrClose

Scope
Ψ � P

!M (νea)N−−−−−−→ P ′

Ψ � (νy)P !M (νea)N−−−−−−→ (νy)P ′
y#!M (νea)N,Ψ

Ψ � (νx)(νy)P τ−→ (νx)(νã)(νy)P ′
x ∈ n(M), x#Ψ

Since x, y, ã#Ψ and (x, ã, y) ≡ (y, x, ã) we have
(Ψ, (νy)(νx)(νã)P ′, (νx)(νã)(νy)P ′) ∈ R ⊆ S∗.
2. y ∈ n(!M (νã)N) and y ∈ n(M): We have the following transition.

Scope

BrClose
Ψ � P

!M (νea)N−−−−−−→ P ′

Ψ � (νy)P τ−→ (νy)(νã)P ′
y ∈ n(M), y#Ψ

Ψ � (νx)(νy)P τ−→ (νx)(νy)(νã)P ′
x#τ, Ψ

Since x, y#Ψ and y, x ≡ x, y we have (Ψ, (νy)(νx)(νã)P ′, (νx)(νy)(νã)P ′) ∈
R ⊆ S∗

Broadcast Psi-calculi with an Application to Wireless Protocols 11

3. y ∈ n(!M (νã)N) and y#M : We then have y ∈ n(N), and derive

BrClose

BrOpen
Ψ � P

!M (νea)N−−−−−−→ P ′

Ψ � (νy)P !M (νy)(νea)N−−−−−−−−−→ P ′
y#ea, Ψ,M, y ∈ n(N)

Ψ � (νx)(νy)P τ−→ (νx)(νy)(νã)P ′
x ∈ n(M), x#Ψ

Since x, y#Ψ and y, x ≡ x, y we have (Ψ, (νy)(νx)(νã)P ′, (νx)(νy)(νã)P ′) ∈
R ⊆ S∗. ut

The soundness proof for scope extension uses the same ideas as the proof
of Lemma 12.

3.2 Motivating the Requisites

An apparently simpler way to define broadcast connectivity is to have just
one binary connectivity predicate relating input and output prefixes, as .↔
does for unicast communication. However, such a predicate would need to
be transitive and symmetric for Theorem 11 to hold, for the same reasons
as in the original psi calculus (detailed in [5]). In wireless broadcast com-
munication systems, symmetry and transitivity do not necessarily hold and
the requirements would not be reasonable.

A weaker version of condition 2 (resp. 1) of Definition 6 would be to
require n(K) ⊆ n(M,Ψ) whenever Ψ ` K

.
� M (resp. Ψ ` M

.
≺ K). How-

ever, this leads to structural equivalence not being sound for bisimulation:
the scope extension case of Theorem 11 fails, as we see in the following
example.

Example 13 We let A = Pfin(N) with 1 = ∅ and ⊗ = ∪. We let T = N and
C = {a .↔ b, a

.
≺ b, a

.
� b : a, b ∈ N}. We define ` by ∀Ψ, a, b, Ψ ` b

.
≺ b iff

b ∈ Ψ and Ψ ` b
.
� a iff b ∈ Ψ . Note that this defintion of entailment does

not satisfy Definition 6, since we may have Ψ ` b
.
� a for some b 6= a.

We let P := (νa)((|{a}|) | a.0 | c.0). Here 1 � P
τ−→ (νa)((|{a}|) | 0 | 0).

However, P results from scope extension from Q := (νa)((|{a}|) | a.0) | c.0,
but Q does not have a corresponding transition under frame 1.

In contrast to unicast actions, the support of the subjects of broadcast ac-
tions is always included in the support of the process generating the action.
This result is used in the proof of the scope extension case of Theorem 11,
to show that a scope extension does not enable any additional broadcast
communication.

Lemma 14 If Ψ � P
!K (νea)N−−−−−−→ P ′ or Ψ � P

?K N−−−→ P ′ then n(K) ⊆ n(P).

Proof By induction on the derivation, using Definition 6 at the base cases.

12 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

4 Modelling network topology changes

When modelling wireless protocols, one important concern is dealing with
connectivity changes. We here give general descriptions of methods of mod-
elling different connectivity configurations using assertions.

The main idea is to allow for different generations of assertions by tag-
ging assertions with a time. Only the most recent generation is used; a
generation is made obsolete by composition with an assertion from a later
generation. We here consider broadcast connectivity, but this technique can
also be used in other scenarios where there is a need to retract assertions.
In the following we assume a set of terms B ⊆ T used as broadcast channels
and in prefixes; we let B,B′ range over elements of B.

4.1 Simple topology

Here assertions are finite sets of connectivity information (M
.
≺ K resp.K

.
�

M), labelled with a time, with the empty set at time 0 as the unit assertion.
Assertion composition intuitively computes the union of all connectivity
information labelled with the most recent generation. The sets C and A
are defined using constructors operating on terms. We define substitution
on C and A homomorphically on their structure. For simplicity, we assume
that no rewriting happens in broadcast output, i.e., that

.
≺ is the equality

relation of B.
Formally,

C , {⊥} ∪ {currentGeneration(g) : g ∈ N} ∪
{K

.
�M : K,M ∈ T} ∪ {M

.
≺ K : K,M ∈ T}

A , N× Pfin({〈K
.
�M〉 : K,M ∈ T})

1 , 〈0, ∅〉

〈g, S〉 ⊗ 〈g′, T 〉 ,

 〈g, S〉 if g > g′

〈g′, T 〉 if g < g′

〈g, S ∪ T 〉 if g = g′

〈g, S〉 ` currentGeneration(g′) iff g = g′

〈g, S〉 ` B
.
≺ B′ if B = B′

〈g, S〉 ` B
.
� B′ if B

.
� B′ ∈ S and n(B) ⊆ n(B′)

Proposition 15 Given T with a substitution function satisfying the re-
quirements of Section 2, the definitions of C, A, ⊗, 1 and ` as above and
(M .↔ N) , ⊥ satisfy the requirements of a broadcast psi-calculus.

The assertion 〈g, {B
.
� B′}〉 states that B′ is in-connected to B in genera-

tion g if n(B) ⊆ n(B′). The condition currentGeneration(g) is used to test
if g is the most recent generation. It is needed for assertion equivalence to be
compositional: without this condition we would have

Broadcast Psi-calculi with an Application to Wireless Protocols 13

〈0, {M
.
� K}〉 ' 〈1, {M

.
� K〉} and 〈0, {M

.
� K}〉 ⊗ 〈1, {K

.
� M}〉 6'

〈1, {M
.
� K}〉 ⊗ 〈1, {K

.
�M}〉, contradicting compositionality.

As an example, we can define a topology controller (assuming a suitable
encoding of the τ prefix):

T = (|〈1, ∅〉|) | τ .
(
(|〈2, {K

.
�M,K

.
� N}〉|) | τ . ((|〈3, {K

.
�M}〉|))

)
In P | T , the process P broadcasts on K while T manages the topology.

Initially F(T) = 〈1, ∅〉 and the broadcast is disconnected; after T τ−→ T ′

then F(T ′) = 〈2, {K
.
�M,K

.
� N}〉 and a broadcast on K can be received

on both M and N , and after T ′ τ−→ T ′′ then a broadcast can be received
only on M , since F(T ′′) = 〈3, {K

.
�M}〉.

Such a connectivity controller can also implement standard mobility
models [?] over a discretized finite space. More fine-grained mobility models
can be implemented by associating a generation with each possible connec-
tion, together with a flag for whether the connection is possible or not. In
such a model, assertion {〈0,M

.
� K, true〉} states that the link M

.
� K is

enabled in its generation 0.

4.2 Scoped topology

As a variation of the example above we define a model where every name
d corresponds to a broadcast channel with dynamic topology. The use of a
name in the broadcast channel allows to restrict its scope.

B , {Bs(d) : d ∈ N} ∪ {Br(M,d) : M ∈ T, d ∈ N} ∪ N
C , {⊥} ∪ {currentGeneration(g,K) : g ∈ N, K ∈ T} ∪

{Bs(M)
.
≺ K) : M,K ∈ T} ∪ {K

.
� Br(M,N) : M,N,K ∈ T}

A , T→fin N× Pfin({Conn(M,N) : M,N ∈ T})
1 , ∅

(Ψ ⊗ Ψ ′)(M) ,

〈g, S〉 if Ψ(M) = 〈g, S〉 ∧ (M 6∈ dom(Ψ ′) ∨

(Ψ ′(M) = 〈j, T 〉 ∧ g > g′))
〈g′, T 〉 if Ψ ′(M) = 〈g′, T 〉 ∧ (M 6∈ dom(Ψ) ∨

(Ψ(M) = 〈g, S〉 ∧ g < g′))
〈g, S ∪ T 〉 if Ψ(M) = 〈g, S〉 ∧ Ψ ′(M) = 〈g, T 〉

Ψ ` currentGeneration(g, d) if Ψ(d) = 〈g, S〉
Ψ ` Bs(c)

.
≺ d if c = d

Ψ ` c
.
� Br(N, d) if c = d and Ψ(c) = 〈g, S〉 with Conn(N, d) ∈ S

Proposition 16 Given T with a substitution function satisfying the re-
quirements of Section 2, the definitions of C, A, ⊗, 1 and ` as above and
(M .↔ N) , ⊥ satisfy the requirements of a broadcast psi-calculus.

14 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

We can then define a topology controller which gradually changes the topol-
ogy from fully disconnected to “a listens on d and b listens on d”:

T = (|d 7→ 〈1, ∅〉|) | τ . ((|d 7→ 〈2, {Conn(a, d)}〉|)
| τ . ((|d 7→ 〈3, {Conn(a, d),Conn(b, d)}〉|)))

We now put a process P inside the scope of d in parallel with the topol-
ogy controller as (νd)(P | T). This ensures that P can communicate using
broadcast on channel d while letting T , but not the environment, influence
the topology.

5 The LUNAR protocol in Psi

In this section we present a model of the LUNAR routing protocol for mobile
ad-hoc networks [28,29]. LUNAR is intended for small wireless networks,
ca 15 nodes, with a network diameter of 3 hops. It does not handle route
reparation, caching etc, and routes must be re-established every few sec-
onds. It is reasonably simple in comparison to many other ad-hoc routing
protocols, and allows us to focus on properties such as dynamic connectivity
and broadcasting. It has previously been verified in [32,31] using SPIN and
UPPAAL; our model is significantly more succinct and at an abstraction
level closer to the specification.

The LUNAR protocol is at “layer 2.5”, between the link and network lay-
ers in the Internet protocol stack. Addressing is by pairs of MAC/Ethernet
addresses and 64-bit selectors, similarly to the IP address and port number
used in UDP/TCP. The selectors are used to find the appropriate packet
handler through the FIB (Forwarding Information Base) table.

Below, we define a psi-calculus for modelling the LUNAR protocol. In
an effort to keep our model simple we abstract from details such as time-to-
live (TTL) fields in messages, optional protocol fields, globally unique host
identifiers, etc. These abstractions are similar to those made in [32,31]. We
do not deal with time explicitly. In the SPIN verification, time is handled
at an abstract level by using the Promela timeout predicate which is true
when no other statement is executable, and checking that in this case, the
protocol has succeeded in delivering a message (cf. Theorem 18).

5.1 The LUNAR broadcast psi-calculus

Channels are of two kinds: broadcast channels are terms nodei with (for
simplicity) empty support, whose connectivity is given by the

.
� and

.
≺

predicates as defined in Section 4.1, and unicast channels which are pairs
〈sel ,mac〉 where sel is a selector name and mac is a MAC address name.
The sel part can also be a RouteOf(node, ip) construction, which looks up
the route of an IP address ip in the routing table of the node node. Spe-
cial channels 〈delivered, nodei〉 are used to signal delivery of a packet to

Broadcast Psi-calculi with an Application to Wireless Protocols 15

the IP layer. Assertions are used to record requests originated at the local
node with Redirected(node, sel), and with HaveRoute(node, destip, hops, sel)
to specify found routes. The conditions contain predicates for testing if a
route has been found (HaveRoute(node, ip)), if a selector has been used for a
request originating at the local node (Redirected(node, sel)), and to extract
the forwarder of a route (〈RouteOf(node, ip), x〉 .↔ 〈sel, x〉).

LUNAR protocol messages are of two types. The first is a route request
message RREQ(selector , targetIP , replyTo), where the selector identifies the
request, targetIP is the IP address the route should reach, and replyTo is
the 〈sel ,mac〉 channel the response should be sent to. The second is a route
reply message, RREP(hops, fwdptr)), where hops is the number of hops to
the destination, and fwdptr is a forwarding pointer, i.e. a 〈sel ,mac〉 channel
where packets can be sent.

The parameters of the LUNAR broadcast psi-calculus extend the simple
topology calculus in Section 4.1. We define substitution in the standard way,
as the syntactic replacement of names by terms. The sets T,C and A are
defined recursively using constructors operating on terms in order to be
closed under substitution.

T , N ∪ {nodei : i ∈ N} ∪ {delivered} ∪
{RREQ(Ser ,TargIp,Rep) : Ser , TargIp, Rep ∈ T} ∪
{RREP(i,Fwd) : i, Fwd ∈ T} ∪
{RouteOf(Node, Ip) : Node, Ip ∈ T} ∪
{〈Sel , N〉 : Sel , N ∈ T} ∪ {N + 1 : N ∈ T} ∪ {0}

C , {M = N,M
.↔ N,HaveRoute(M,N),Redirected(M,N) : M,N ∈ T} ∪

{K
.
�M : K,M ∈ T} ∪ {M

.
≺ K : K,M ∈ T} ∪

{currentGeneration(g) : g ∈ N} ∪ {¬φ : φ ∈ C}
A , N× Pfin({〈K

.
�M〉 : K,M ∈ T})×

Pfin({HaveRoute(M,N1, i, N2) : i, M,N1, N2 ∈ T} ∪
{Redirected(M,N) : M,N ∈ T})

1 , 〈0, ∅, ∅〉

〈g, S,A〉 ⊗ 〈g′, T, B〉 ,

 〈g, S,A ∪B〉 if g > g′

〈g′, T, A ∪B〉 if g < g′

〈g, S ∪ T,A ∪B〉 if g = g′

Given Ψ = 〈g, S,A〉, we let RΨ be the symmetric and transitive closure of
the relation

{(〈a, b〉, 〈a, b〉) : a, b ∈ N} ∪ {(〈delivered, nodei〉, 〈delivered, nodei〉) : i ∈ N} ∪
{(〈RouteOf(nodei, a), x〉, 〈b, x〉) : i ∈ N, j ∈ T,HaveRoute(nodei, a, j, b) ∈ A}

16 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

Entailment is then defined as follows.

Ψ ` a = a, a ∈ N
Ψ ` M .↔ N iff (M,N) ∈ RΨ

〈g, S,A〉 ` currentGeneration(g)
Ψ ` M

.
≺ N iff M = N

〈g, S,A〉 ` M
.
� N iff M

.
� N ∈ S

and n(M) ⊆ n(N)
〈g, S,A ∪ {HaveRoute(nodei, a, j, b)}〉 ` HaveRoute(nodei, a)
〈g, S,A ∪ {Redirected(nodei, s)}〉 ` Redirected(nodei, s)

Ψ ` ¬ϕ if not Ψ ` ϕ

Theorem 17 The LUNAR psi-calculus defined above satisfies all the requi-
sites of a broadcast psi-calculus.

This theorem has been formally proved in Isabelle/Nominal [?]. A sketch
outlining the main ideas of the proof follows:

Proof (sketch) The requisites on the support of the broadcast channels are
immediate from the definition. It is straight-forward to show the Abelian
monoid laws for ⊗,1. Transitivity and symmetry of channel equivalence
holds by definition. The only nontrivial property is compositionality: We
establish that Ψ ⊗ Ψ1 ` ϕ and Ψ1 ' Ψ2 implies Ψ ⊗ Ψ2 ` ϕ by induction
on the structure of the condition ϕ. The only inductive step is for nega-
tion and this follows by symmetry of '. If ϕ is a broadcast connectivity
condition or currentGeneration(g), the proof is by case distinction on the
relative generations of Ψ1, Ψ2 and Ψ . If ϕ is a channel equivalence an inner
induction on the length of the chain of the involved HaveRoute elements in
Ψ ⊗ Ψ1 is necessary. Each such element is either in Ψ and therefore also in
Ψ⊗Ψ2, or in Ψ1. In the latter case Ψ1 entails a channel equivalence from this
element alone and therefore Ψ2 entails the same. Thus Ψ2 must contain a
suitable sequence of HaveRoute elements to derive this channel equivalence;
this sequence is then in Ψ ⊗ Ψ2.

5.2 Representing process identifiers

We use process identifiers to improve the readability of the LUNAR pro-
tocol model. However, an astute reader will note that broadcast psi-calculi
do not feature process identifiers - rather, replication is used as the mecha-
nism for expressing infinite behaviour. In many other process calculi, process
identifiers and recursion can be encoded in a standard fashion using replica-
tion, see e.g. [26]. Unfortunately, there is currently no proof that the same
encodability results apply to broadcast psi-calculi.

To introduce process identifiers on a more sound theoretical foundation,
we combine broadcast psi-calculi with higher-order psi-calculi [?], an orthog-
onal extension of psi-calculi which allows terms to act as handles to invoke

Broadcast Psi-calculi with an Application to Wireless Protocols 17

the behaviour of processes. In this setting, process identifiers are simply
terms.

Briefly, higher-order psi-calculi introduce the notion of a clause M ⇐
P , meaning that the term M is a handle for invoking P . We extend the
entailment relation ` so that assertions can entail clauses in addition to
conditions. Agents are extended with invocations run M , and a single new
rule is added to the semantics:

Invocation
Ψ `M ⇐ P Ψ � P

α−→ P ′

Ψ � run M
α−→ P ′

The calculi that result from adding the above-mentioned extensions to
broadcast psi-calculi will be referred to as higher-order broadcast psi-calculi.
We use Isabelle/Nominal to formally prove that all the meta-theoretic re-
sults presented in Section 3.1 apply not only to broadcast psi-calculi, but
also to higher-order broadcast psi-calculi - hence we feel justified in claim-
ing that broadcast and higher-order are orthogonal extensions. The proof
scripts are available online [?].

Further, higher-order psi-calculi feature a lifting technique whereby an
arbitrary first-order psi-calculus can be lifted to a corresponding canon-
ical higher-order psi-calculus, extending it with parametrised clauses. In
a canonical higher-order psi-calculus, sets of parametrised clauses on the
form M(N) ⇐ P are added to the assertions, such that {M(N) ⇐ P} `
M(N [x̃ := T̃])⇐ P [x̃ := T̃].

In the following, we will implicitly be representing clauses using this
feature of the canonical higher-order calculus corresponding to the LUNAR
broadcast psi-calculus of Section 5.1.

5.3 The psi-calculus model of the LUNAR protocol

Figures 1-7 describe our psi-calculus model of the LUNAR protocol. Process
declarations are of the form M(Ñ) ⇐ P , where M is a process identifier
(and also a term, implicitly included in T), Ñ a list of terms where oc-
currences of names are binding, and P is a process s.t. n(P) ⊆ n(Ñ). In
a process, we write M(Ñ) for invoking a process declaration M(K̃) ⇐ P

such that Ñ = K̃[x̃ := L̃] with x̃ = n(K̃), resulting in the process P [x̃ := L̃].
For our purposes, lists can be adequately represented using the pairing con-
struct included in the term language. We write if ϕ then P else Q for
case ϕ : P [] ¬ϕ : Q, and assume a suitable encoding of the τ prefix.

Our model of the protocol closely follows the informal protocol descrip-
tion in [29, Section 4]. Each figure in our model corresponds to one or more
of part 0-5 of the protocol description. To allocate a selector, we simply
bind a name; to associate (or bind) a selector to a packet handler we use
a replicated process which receives on the unicast channel described by the
pair of the selector and our MAC address. An example of this can be seen

18 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

in the LunARP process declaration in Fig. 1. The description in [29, Section
4, step 0.a] says “Allocate an unused "receiver chosen" selector S
and bind it to a transient "source RREP packet handler"”, which
in our process declaration corresponds to the binding of rchosen and the sub-
process ! 〈rchosen,mymac〉(x) .SRrepHandler(mynode,mymac, destip, x).

In the informal protocol description [29], the FIB is “abused” (in steps
0.b and 1.b) by installing a null packet handler for the selector created when
sending a route request. This FIB entry is only used to detect and avoid
circular forwarding of route requests. We model this by an explicit asser-
tion and a matching condition. An example can be seen is the subprocess
(|Redirected(mynode, schosen)|) of the LunARP process declaration, and the
test on the first line of the RreqHandler process declaration (Fig. 2) using
the Redirected(mynode, schosen) condition.

The routing table is modelled using assertions, which illustrates how
these can be used as a global data structure. Additions to the routing ta-
ble are done in the SRrepHandler process definition (Fig. 4), which adds
(|HaveRoute(mynode, destip, hops, rchosen)|) to the environment. Such as-
sertions together form the routing table, which is tested in the IPtransmit
process definition (Fig. 7) using the HaveRoute(mynode, destip) condition.

For simplicity we do not model route timeouts and the deletion of routes,
but this could be done using the mechanism in Section 4.

The LUNAR procedure for route discovery starts when a node wants
to send a message to a node it does not already have a route to (Fig. 7,
else branch). It then (Fig. 1) associates a fresh selector with a response
packet handler, and broadcasts a Route Request (RREQ) message to its
neighbours. A node which receives a RREQ message (Fig. 2) for its own
IP address sets up a packet handler to deliver IP packets, and includes the
corresponding selector in a response Route Reply (RREP) message to the
reply channel found in the RREQ message. If the RREQ message was not
for its own IP address, the message is re-broadcast after replacing the reply
channel with a freshly allocated reply selector and its own MAC address.
When such an intermediary node receives a RREP message (Fig. 3), it
increments the hop counter and forwards the RREP message to the source
of the original RREQ message. When the originator of a RREQ message
eventually receives the matching RREP (Fig. 4), it installs a route and
informs the IP layer about it. The message can then be resent (Fig. 7, then
branch) and delivered (Fig. 5) by unicast messages through the chain of
intermediary forwarding nodes.

We show the basic correctness of the model by the following theorem,
which in essence corresponds to the correct operation of an ad-hoc routing
protocol [32, Definition 1]: if there is a path between two nodes, the protocol
finds it, and it is possible to send packets along the path to the destination
node.

Broadcast Psi-calculi with an Application to Wireless Protocols 19

LunARP(mynode,mymac, destip)⇐
(νrchosen, schosen)0@ ! 〈rchosen,mymac〉(x) . SRrepHandler(mynode,mymac, destip, x)

| (|Redirected(mynode, schosen)|)
| mynode〈RREQ(schosen, destip, 〈rchosen,mymac〉)〉 .0

1A
Fig. 1 Part 0: the initialisation step at the node that wishes to discover a route

RreqHandler(mynode,mymac,myip,RREQ(schosen, destip, repchn))⇐
if Redirected(mynode, schosen) then 0

else τ .
“

(|Redirected(mynode, schosen)|) |
if destip = myip then /* Part 2: Target found */

(νrchosen)
! 〈rchosen,mymac〉(x) . IPdeliver(x ,mynode)

| repchn〈RREP(0, 〈rchosen,mymac〉)〉 .0

!
else

(νrchosen)
! 〈rchosen,mymac〉(x) . IRrepHandler(mymac, repchn, x)

| mynode〈RREQ(schosen, destip, 〈rchosen,mymac〉)〉 .0

!”
Fig. 2 Part 1: RREQ packet handler, and Part 2: Target found branch

IRrepHandler(mymac, repchn,RREP(hops, fwdptr))⇐
(νrchosen)

! 〈rchosen,mymac〉(x) . fwdptr x .0

| repchn〈RREP(hops + 1 , 〈rchosen,mymac〉)〉 .0

!
Fig. 3 Part 3: Intermediate RREP packet handler

SRrepHandler(mynode,mymac, destip,RREP(hops, fwdptr))⇐
(νrchosen)„

! 〈rchosen,mymac〉(x) . fwdptr x .0

| (|HaveRoute(mynode, destip, hops, rchosen)|)

«
Fig. 4 Part 4: Source RREP packet handler

IPdeliver(x,node) ⇐ 〈delivered,node〉x .0

Fig. 5 Part 5: IP delivery

BrdHandler(mynode,mac, ip)⇐

mynode(λs, t, r)RREQ(s, t, r) .

„
RreqHandler(mynode,mac, ip,RREQ(s, t, r))
| BrdHandler(mynode,mac, ip)

«
Fig. 6 Broadcast handler

IPtransmit(mynode,mymac, destip, pkt)⇐
if HaveRoute(mynode, destip) then 〈RouteOf(mynode, destip),mymac〉 pkt .0
else LunARP(mynode,mymac, destip)

Fig. 7 IP transmission: if have route, send it to local forwarder, else ask for route

20 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

The system to analyse consists of n nodes with their respective broadcast
handler; node 0 attempts to transmit a packet to the IP address of node n.

Specn(pkt , ip0, . . . , ipn)⇐ (νmac0, . . . ,macn)(∏
0≤i≤n BrdHandler(nodei,maci, ipi)
| ! IPtransmit(node0,mac0, ipn, pkt)

)
Theorem 18 If Ψ connects node0 and noden via a node nodei
(i.e. Ψ ` node0

.
� nodei and Ψ ` nodei

.
� noden), then

Ψ | (νip0, . . . , ipn)Specn(pkt, ip0, . . . , ipn)

=⇒ 〈delivered,noden〉pkt−−−−−−−−−−−−→ Ψ | (νip0, . . . , ipn)S

and F(S) ` HaveRoute(node0, ipn), where =⇒ stands for an interleaving
of τ and broadcast output transitions.

Proof By following transitions.

The SPIN verification performed in [32] checks the same reachability
property, for up to five nodes. Our analysis is valid for any n, but is limited to
a configuration where the sender (node 0) and the receiver (node n) are only
separated by a single node. This limitation is due to the labour of manually
following transitions in a non-trivial specification. We are currently working
on remedies for this: firstly by extending our symbolic semantics for psi-
calculi [14], secondly by implementing the symbolic semantics in our tool for
automatic verification [12], and thirdly and orthogonally, by implementing
the LUNAR model in Isabelle/Nominal. These remedies are still work in
progress. In the Isabelle approach, we hope to prove the following conjecture.

Conjecture 19 If Ψ connects node0 and noden via k proxy nodes pn1, . . . , pnk,
where {pn1, . . . , pnk} ⊆ {node1, . . . , noden−1}
(i.e. Ψ ` node0

.
� pn1, pn1

.
� pn2, . . . , pnk−1

.
� pnk, pnk

.
� noden), then

Ψ | (νip0, . . . , ipn)Specn(pkt, ip0, . . . , ipn)

=⇒ 〈delivered,noden〉pkt−−−−−−−−−−−−→ Ψ | (νip0, . . . , ipn)S

and F(S) ` HaveRoute(node0, ipn), where =⇒ stands for an interleaving
of τ and broadcast output transitions.

The definition of BrdHandler illustrates a peculiarity of broadcast se-
mantics: a reader well-versed in pi-calculus specifications with replication
and recursion may consider a more concise variant of the definition using
replication instead of recursion, e.g.

BrdHandler′(mynode,mac, ip)⇐
! mynode(λs, t, r)RREQ(s, t, r) .RreqHandler(mynode,mac, ip,RREQ(s, t, r))

However, when the input prefix is over a broadcast channel, as is the
case here, the two are not equivalent since a single communication with
BrdHandler′ may result in arbitrarily many RreqHandler processes, while
BrdHandler only results in one.

Broadcast Psi-calculi with an Application to Wireless Protocols 21

6 Related work

Process calculi with broadcast communication go back to the early 1980’s.
Milner developed SCCS [19] as a generalisation of CCS [18] to include mul-
tiway communication, of which broadcast can be seen as a special case. At
the same time Austry and Boudol presented MEIJE [2] as a semantic basis
for high-level hardware definition languages.

The first process calculus to seriously consider broadcast with an asyn-
chronous parallel composition was CBS [22,23]. Its development is recorded
in a series of papers, examining it from many perspectives. The main focus
is on employing broadcast as a high level programming paradigm. CBS was
later extended to the pi-calculus in the bπ formalism [7]. Here the broadcast
communication channels are names that can be scoped and transmitted be-
tween agents. The main point of this work is to establish a separation result
in expressiveness: in the pi-calculus, broadcast cannot be uniformly encoded
by unicast.

Recent advances in wireless networks have created a renewed interest
in the broadcast paradigm. The first process calculus with this in mind
was probably CBS] [20]. This is a development of CBS to include varying
interconnection topologies. Input and output is performed on a universal
ether and transitions are indexed with topologies which are sets of connec-
tivity graphs; the connectivity graph matters for the input rule (reception
is possible from any connected location). Main applications are on cryp-
tography and routing protocols in mobile ad hoc wireless networks. CBS]

has been followed by several similar calculi. In CWS [17,15] the focus is
on modelling low level interference. Communication actions have distinct
beginnings and endings, and two actions may interfere if one begins before
another has ended. The main result is an operational correspondence be-
tween a labelled semantics and a reduction semantics. CMAN [10] is a high
level formalism extended with data types, just as the applied pi-calculus
extends the original pi-calculus. Data can contain constructors and destruc-
tors. There are results on properties of weak bisimulation and an analysis of
a cryptographic routing protocol. In the ω-calculus [27] emphasis is on ex-
pressing connectivity using sets of group names. An extension also includes
separate unicast channels, making this formalism the first to accommodate
both multicast and unicast in wireless networks. There are results about
strong bisimulation and a verification of a mobile ad hoc network leader
election protocol through weak bisimulation. RBPT [9] is similar and uses
an alternative technique to represent topology changes, leading to smaller
state spaces, and is also different in that it can accommodate an asymmet-
ric neighbour relation (to model the fact that A can send to B but not the
other way).

bAπ [11] is an extension of the applied pi-calculus [1] with broadcast,
where connectivity information appears explicitly in the process terms and
can change non-deterministically during execution. The claimed result of
the paper is proving that a weak labelled bisimulation, for which connectiv-

22 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

ity is irrelevant, coincides with barbed equivalence. However, for the same
reasons as in the applied pi-calculus (cf. [4]), labelled bisimilarity is not
compositional in bAπ, so the correspondence does not hold. A suggested
fix is to remove communication of unicast channels from the calculus. We
would finally mention CMN [16]. The claimed result is to compare two dif-
ferent kinds of semantics for a broadcast operation, but it is in error. The
labelled transition semantics contains no rule for merging two inputs as in
our BrMerge. As a consequence parallel composition fails to be associa-
tive. Consider the situation where P does an output and Q and R both
do inputs. A broadcast communication involving all three agents can be
derived from (P |Q) |R but not from P | (Q|R), since in the latter agent the
component Q|R cannot make an input involving both Q and R.

It is interesting to compare these formalisms and our broadcast psi from
a few important perspectives. Firstly, the broadcast channels are explic-
itly represented in ω, bπ, CWS and CMN; they are mobile (in the sense
that they can be transmitted) only in bπ. In ω, only unicast channels can
be communicated. In broadcast psi, channels are represented as arbitrary
mobile data terms which may contain any number of names. Secondly, the
data transmitted in CMAN and bAπ is akin to the applied pi-calculus where
data are drawn from an inductively defined set and contain names which
may be scoped. In ω and bπ data are single names which may be scoped; in
the other calculi data cannot contain scoped names. In broadcast psi data
are arbitrary terms, drawn from a nominal set, and may include higher or-
der objects as well as bound names. Finally, node mobility is represented
explicitly as particular semantic rules in CMAN, CMN, bAπ and ω, and
implicitly in the requirements of bisimulation in CBS] and RBPT. In this
respect broadcast psi calculi are similar to the latter: connectivity is de-
termined by the assertions in the environment, and in a bisimulation these
may change after each transition.

All calculi presented here use a kind of labelled transition semantics
(LTS). bπ, bAπ, CBS], CWS and ω use it in conjunction with a structural
congruence (SC), the rest (including broadcast psi) do not use a SC. In
our experience SC is efficient in that the definitions become more compact
and easy to understand, but introduces severe difficulties in making fully
rigorous proofs. bAπ, CWS, CMAN and CMN additionally use a reduc-
tion semantics using structural congruence (RS) and prove its agreement
with the labelled semantics. Table 3 summarises some of the distinguishing
features of calculi for wireless networks.

Finally, broadcast psi is different from the other calculi for wireless
broadcast in that there is no stratification of the syntax into processes and
networks. There is just the one kind of agent, suitable for expressing both
processes operating in nodes and behaviours of entire networks. In contrast,
the other calculi has one set of constructs to express processes and another
to express networks, sometimes leading to duplication of effort (for exam-
ple, there can be a parallel composition operator both at the process and

Broadcast Psi-calculi with an Application to Wireless Protocols 23

Calculus
Broadcast
Channels

Scoped
Data Mobility Semantics

bAπ - term in semantics LTS+SC and RS

CBS] - - in bisimulation LTS+SC
CWS constant - - LTS+SC and RS
CMAN - term in semantics LTS and RS
CMN name - in semantics LTS and RS
ω groups name in semantics LTS+SC
RBPT - - in bisimulation LTS
Broadcast psi term term in bisimulation LTS

Table 3 Comparison of some process algebras for wireless broadcast.

network level). Our conclusion is that broadcast psi is conceptually simpler
and more efficient for rigorous proofs, and yet more expressive.

7 Conclusion

We have extended the psi-calculi framework with broadcast communication,
and formally proved using Isabelle/Nominal that the standard congruence
and structural properties of bisimilarity hold also after the addition. We
have shown how node mobility and network topology changes can be mod-
elled using assertions. Since bisimilarity is closed under all assertions, two
bisimilar processes are equivalent in all initial topologies and for all node
mobility patterns. We demonstrated expressive power by modelling the LU-
NAR protocol for route discovery in wireless ad-hoc networks, and verified
a basic correctness property of the protocol.

The proofs of the meta-theoretic results in Section 3.1 [24] are formally
verified in the interactive theorem prover Isabelle/Nominal. The full formal-
isation of broadcast psi-calculi amounts to ca 33 000 lines of Isabelle code,
of which about 21 000 lines are re-used from our earlier work [5].

The model of LUNAR is simplified for clarity and to make manual anal-
ysis more manageable. The simplifications are similar to those in the SPIN
model by Wibling et al. [32], although we do not model timeouts. Their
model [31] is ca 250 lines of SPIN code (excluding comments) while ours is
approximately 30 lines. Our model could be improved at the cost of added
complexity. For example, allowing broadcast channels to have non-empty
support would let us hide broadcast actions, routing tables could be made
local by including a scoped name per node, and route deletions could be
modelled using generational mechanisms similar to Section 4.

We are currently working on extending the symbolic semantics for psi-
calculi [14] with broadcast, and implementing the semantics in our tool
for automatic verification, the Psi-calculi Workbench [12]. We also plan to
study weak bisimulation for the broadcast semantics. In order to model

24 Borgström, Huang, Johansson, Raabjerg, Victor, Åman Pohjola, Parrow

more aspects of wireless protocols, we would like to add general resource
awareness (e.g. energy or time) to psi-calculi.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Proceedings of POPL ’01, pages 104–115. ACM, 2001.

2. D. Austry and G. Boudol. Algèbre de processus et synchronisation. Theor.
Comput. Sci., 30:91–131, 1984.

3. J. Bengtson. Formalising process calculi. PhD thesis, Uppsala University,
June 2010.

4. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile
processes, nominal data, and logic. In Proceedings of LICS 2009, pages 39–
48. IEEE, 2009.

5. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: A frame-
work for mobile processes with nominal data and logic. Logical Methods in
Computer Science, 7(1), 2011. This is an extended version of [4].

6. J. Borgström, S. Huang, M. Johansson, P. Raabjerg, B. Victor, J. Å. Pohjola,
and J. Parrow. Broadcast psi-calculi with an application to wireless protocols.
In G. Barthe, A. Pardo, and G. Schneider, editors, Software Engineering and
Formal Methods: SEFM 2011, volume 7041 of LNCS, pages 74–89. Springer,
Nov. 2011.

7. C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast
communications. In G. Ciobanu and G. Paun, editors, FCT, volume 1684 of
LNCS, pages 258–268. Springer, 1999.

8. M. Gabbay and A. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

9. F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted broadcast process
theory. In A. Cerone and S. Gruner, editors, SEFM, pages 345–354. IEEE
Computer Society, 2008.

10. J. C. Godskesen. A calculus for mobile ad hoc networks. In A. L. Murphy and
J. Vitek, editors, COORDINATION, volume 4467 of LNCS, pages 132–150.
Springer, 2007.

11. J. C. Godskesen. Observables for mobile and wireless broadcasting systems. In
Proc. of COORDINATION 2010, volume 6116 of LNCS, pages 1–15. Springer,
2010.

12. R. Gutkovas. Exercising Psi-calculi: A Psi-calculi workbench. M.Sc. thesis,
Department of Information Technology, Uppsala University, June 2011.

13. M. Johansson. Psi-calculi: a framework for mobile process calculi. PhD thesis,
Uppsala University, May 2010.

14. M. Johansson, B. Victor, and J. Parrow. Computing strong and weak bisimu-
lations for psi-calculi. Journal of Logic and Algebraic Programming, 81(3):162–
180, 2012.

15. I. Lanese and D. Sangiorgi. An operational semantics for a calculus for wireless
systems. Theor. Comp. Sci., 411(19):1928–1948, 2010.

16. M. Merro. An observational theory for mobile ad hoc networks (full version).
Inf. Comput., 207(2):194–208, 2009.

17. N. Mezzetti and D. Sangiorgi. Towards a calculus for wireless systems. Electr.
Notes Theor. Comput. Sci., 158:331–353, 2006.

Broadcast Psi-calculi with an Application to Wireless Protocols 25

18. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980.

19. R. Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci.,
25:267–310, 1983.

20. S. Nanz and C. Hankin. A framework for security analysis of mobile wireless
networks. Theor. Comp. Sci., 367(1-2):203–227, 2006.

21. A. M. Pitts. Nominal logic, a first order theory of names and binding. Infor-
mation and Computation, 186:165–193, 2003.

22. K. V. S. Prasad. A calculus of broadcasting systems. In S. Abramsky and
T. S. E. Maibaum, editors, TAPSOFT, Vol.1, volume 493 of LNCS, pages
338–358. Springer, 1991.

23. K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Program.,
25(2-3):285–327, 1995.

24. P. Raabjerg and J. Åman Pohjola. Broadcast psi-calculus for-
malisation. http://www.it.uu.se/research/group/mobility/theorem/

broadcastpsi, July 2011. Isabelle/HOL-Nominal formalisation of the defi-
nitions, theorems and proofs.

25. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science, 8(5):447–479, 1998. An extended abstract appeared in the
Proceedings of MFCS ’95, LNCS 969: 479–488.

26. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

27. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for
mobile ad hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

28. C. Tschudin, R. Gold, O. Rensfelt, and O. Wibling. LUNAR: a lightweight
underlay network ad-hoc routing protocol and implementation. In Proc of
NEW2AN’04, St. Petersburg, Feb. 2004.

29. C. F. Tschudin. Lightweight underlay network ad hoc routing (LUNAR)
protocol. Internet Draft, Mobile Ad Hoc Networking Working Group, Mar.
2004.

30. C. Urban and C. Tasson. Nominal techniques in Isabelle/HOL. In R. Nieuwen-
huis, editor, Proceedings of CADE 2005, volume 3632 of LNCS, pages 38–53.
Springer, 2005.

31. O. Wibling. SPIN and UPPAAL ad hoc routing protocol mod-
els. http://www.it.uu.se/research/group/mobility/adhoc/gbt/other_

examples, 2004. Models of LUNAR scenarios used in [32].
32. O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc

routing protocols. In D. de Frutos-Escrig and M. Núñez, editors, FORTE
2004, volume 3235 of LNCS, pages 343–358. Springer, 2004.

http://www.it.uu.se/research/group/mobility/theorem/broadcastpsi
http://www.it.uu.se/research/group/mobility/theorem/broadcastpsi
http://www.it.uu.se/research/group/mobility/adhoc/gbt/other_examples
http://www.it.uu.se/research/group/mobility/adhoc/gbt/other_examples

	Introduction
	Psi-calculi
	Broadcast psi-calculi
	Modelling network topology changes
	The LUNAR protocol in Psi
	Related work
	Conclusion

