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Abstract. The π-calculus with data terms (πT) extends the pure π-calculus
by data constructors and destructors and allows data to be transmitted between
agents. It has long been known how to encode such data types in π, but until now
it has been open how to make the encoding fully abstract, meaning that two en-
codings (in π) are semantically equivalent precisely when the original πT agents
are semantically equivalent. We present a new type of encoding and prove it to
be fully abstract with respect to may-testing equivalence. To our knowledge this
is the first result of its kind, for any calculus enriched with data terms. It has
particular importance when representing security properties since attackers can
be regarded as may-test observers. Full abstraction proves that it does not matter
whether such observers are formulated in π or πT, both are equally expressive
in this respect. The technical new idea consists of achieving full abstraction by
encoding data as table entries rather than active processes, and using a firewalled
central integrity manager to ensure data security.

1 Introduction

The increasingly complicated mechanisms to guarantee secure communications have
spurred the development of appropriate formal description techniques. In this paper we
study a prototypical such formalism, a π-calculus enriched with data terms (πT), and
show how it can be encoded in the more fundamental π-calculus [13] while preserving
full abstraction. This means that two processes in πT are equivalent precisely when
their encodings are equivalent. Although encodings between such calculi has proved
a rich field of study this is the first result of its kind. We achieve it by designing the
encoding in a different way from what is usually done. The full proof is very technical
and we here outline the main ideas, which are quite general and can in principle be
applied to many similar calculi.

πT extends the basic π-calculus by including constructors and deconstructors for
data terms. In this the calculus resembles a high level parallel programming language,
and specifications of security protocols can be made in a familiar operational style. It
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can be seen as a generalisation of the spi-calculus [3] (which extends π with primitives
for encryption and decryption) in that arbitrary constructors and destructors are allowed.
It can also be seen as a simplification of the applied π-calculus by Abadi and Fournet
[1], since it does not admit equations over the data terms.

A key idea when encoding data was expressed already in the first papers on the
π-calculus: a data structure is represented in π as a process with the ability to interact
along designated ports in order to carry out operations. In such a manner all known
kinds of data structures, certainly including those of πT, can be encoded.

The problem with this kind of encoding appears when we consider a useful notion
of semantic equality between πT processes. We shall here as a prime example look at
testing equivalence. The main idea is that two processes are behaviourally equivalent
precisely when they can satisfy the same tests. Tests are arbitrary processes of the cal-
culus, which of course is expressive enough to describe not only security protocols but
also the potential attackers on them. So if we know of two processes that they are testing
equivalent we know that they will behave similarly in all conceivable environments. In
an earlier paper [4] we have proved for the spi calculus that a process satisfies a test
if and only if the encoding of the process satisfies the encoding of the test. The same
result, as we will show in this paper, holds for an encoding from πT to π.

Unfortunately, with the traditional kind of encoding from πT to π the testing equiva-
lences in πT and π turn out to be different. The reason is, briefly put, that the encodings
of two πT processes satisfy the same tests only if the tests are encodings of πT tests.
But in the π-calculus there are also tests which are not encodings of any πT test, and
some of these may be able to discriminate between the encodings of otherwise equiva-
lent processes. Formally full abstraction, the result that two πT processes are equivalent
precisely when their encodings are equivalent, has proved elusive, not only for πT but
for all similar calculi, and for similar operationally defined equivalences.

In this paper we exhibit an encoding from πT to π and prove it to be fully abstract.
A key ingredient is that we use a central so called integrity manager (M) which stores
all data values generated throughout a computation. All access to data must go through
a level of indirection at M, which only allows accesses that adheres to the protocols for
interacting with data. Thus, the previously dangerous π-calculus processes that are not
encodings of πT processes are rendered impotent.

The remaining sections of this paper are organised as follows: Section 2 introduces
πT. Section 3 presents the encoding of πT into the polyadic π-calculus. The reader may
refer to [5] for some parts that have to be left out here due to a lack of space. Section 4
states the full-abstraction result. It also gives an idea of its long and complex proof. The
full proof can be found in [5]. Section 5 discusses related work. Section 6 concludes the
paper with some final remarks, in particular about the lack of compositionality of the
encoding due to the global integrity manager.

2 Background: π-Calculus, πT-Calculus

2.1 The πT-Calculus

As always in π-like calculi, an infinite set of names is assumed to be given. This set is
here typically ranged over by lower-case letters from the middle of the alphabet, such
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as n. Sets of names are typically ranged over by upper-case letters from the middle of
the alphabet, such as N . As usual in spi-calculus-like extensions of the π-calculus we
distinguish names and variables. The set of variables is also assumed to be infinite. It
is here typically ranged over by lower-case letters from the end of the alphabet, such as
x. We designate finite vectors by means of the -̃symbol. The length of any finite vector
X̃ is denoted by |X̃|.

The πT-calculus is further characterised by assuming a set of function symbols from
which data terms can be formed, distinguishing dedicated constructors and deconstruc-
tors (with minor restrictions, see below). Predictably, constructors are used to build data
terms and deconstructors to take them apart. Both the set of constructors and the set of
deconstructors are assumed to be finite. Constructors are typically ranged over by f ,
deconstructors by d. Each constructor f is assumed to have a fixed, finite arity ar[f ].

Data terms are then given as follows:

T , . . . ::= n | x | f(T1, . . . , Tar[f ])

For the sake of simplicity, no type discipline is assumed for data terms, only the con-
structor arities must be respected. The set of all names that occur in any given vector
T̃ of data terms is denoted by nm[T̃ ]. Deconstructors must not occur within data terms.
They may only be applied via the let construct introduced below. A value is a data
term without any variables. Values are typically ranged over by V and W .

Agent expressions are then given as follows:

P , . . . ::= 0 | T (x).P | T 〈U〉.P | P | Q | (ν n) P | ! P

| if T = U then P else Q | let x = d(T̃ ) in P

The 0 constant denotes the inert process. An input prefix T (x).P can be performed in
a context where T evaluates to some name n. Then a value, e.g. V , is received over the
channel denoted by n and the process continues as P where x is substituted by V . An
output prefix T 〈U〉.P can also be performed in a context where T evaluates to some
name n and U to some value V . Then V is sent via the channel denoted by n and the
process continues as P . Here n and T are called the subject, and x and V the object
of the input or output. The next three operators are standard in pi-calculus-like calculi:
P | Q behaves like P and Q acting concurrently; (ν n) P behaves like P where n is
local; ! P behaves like infinitely many copies of P put in parallel. The conditional and
the let have their usual meaning. In πT, let is the only place where deconstructors
may be applied.

Input prefixing, let , and restriction are binders: T (x).P and let x = d(T̃ ) in P
bind the variable x in P ; (ν n) P binds the name n in P . The set of names occurring
free (non-bound) in a process expression P is denoted by fn[P ] and similarly for a
vector P̃ = P1 . . . Pn of process expressions fn[P̃ ] means the union of all fn[Pi].

We do not distinguish between expressions that differ only up to alpha conversion of
bound names and variables. Given any data term or process expression H , H{x̃ := T̃}
denotes the term after simultaneously substituting each xi by Ti. Substitution always
entails implicit alpha-conversion of bound names in H such that there is no capture of
any free names in T̃ . A process is an agent expression without free variables.
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We often omit trailing 0 suffixes, writing x〈y〉 for x〈y〉.0. We often also use an
“inline” notation for restriction, and e.g. write x〈ν y〉.P as shorthand for (ν y) x〈y〉.P .
Further, we use the standard notation

∏
i∈{j1,...,jk} Pi = Pj1 | . . . | Pjk

.

Deconstructor Equations. Deconstructor equations describe how deconstructors act
upon values. To this end, we need to introduce value patterns:

G ::= x | f(G1, . . . , Gar[f ])

A deconstructor equation is then of the form d(G̃) ∆= x where x must occur in G̃. There
may be several, but only finitely many equations for each deconstructor. Since there are
finitely many deconstructors, there are only finitely many deconstructor equations.

Operational Semantics. Abadi’s and Fournet’s semantics for the applied π-calculus [1]
use active substitutions and rely heavily on structural congruence rules. Our semantics,
using the let construct for deconstruction, is more direct and does not utilise structural
congruence. The rules for scope opening are similar to the variant in [1] giving the finest
bisimulation equivalence relation; we are dealing with may testing where this finesse
does not matter.

Actions are of one of three forms:

n(V ): Input of value V on channel n where V is bound to x as shown below.
(ν M) n〈V 〉: Output of value V on channel n where the names in M are extruded as

private names. The SOS clauses ensure that we always have M ⊆ fn(V ).
τ : Silent action.

The individual clauses are as shown below. The treatment of replication follows [17].
The clauses for if then else are slightly non-standard since they entail a τ -action,
just like in [1]. This is advantageous for our purposes of considering may-testing. The
missing symmetric clauses for interleaving and closure are left implicit.

n(x).P
n(V )−−−→ P{x := V }

n〈V 〉.P (ν ∅) n〈V〉−−−−−−→ P

P
n(V )−−−→ P ′ Q

(ν M) n〈V 〉−−−−−−−→ Q′ fn[P ] ∩ M = ∅
P | Q τ−→ (ν M)(P ′ | Q′)

P
α−→ P ′ bn[α] ∩ fn[Q] = ∅

P | Q α−→ P ′ | Q
P

(ν M) n〈V 〉−−−−−−−→ P ′ n �= m′ m′ ∈ nm[V ] \ M

(ν m′) P
(ν M + m′) n〈V 〉−−−−−−−−−−−→ P ′

P
α−→ P ′ n �∈ nm[α]

(ν n) P
α−→ (ν n) P ′

if T = T then P else Q
τ−→ P

T �= U

if T = U then P else Q
τ−→ Q

P
α−→ P ′ bn[α] ∩ fn[P ] = ∅

! P
α−→ P ′ | ! P

P
n(V )−−−→ P ′

1 P
(ν M) n〈V 〉−−−−−−−→ P ′

2 fn[P ] ∩ M = ∅
! P

τ−→ ((ν M)(P ′
1 | P ′

2)) | ! P
d(G̃)

∆
= x G̃σ = Ṽ

let y = d(Ṽ ) in P
τ−→ P{y := xσ}

We denote by nm[α] the set of names that syntactically occur in any action α; we
denote by bn[α] the set of bound names of α: bn[n(x)] = ∅, bn[(ν M) n〈T 〉] = M ,
bn[τ ] = ∅; (ν {n1, . . . , nk}) stands for (ν n1) . . . (ν nk), k ≥ 0. Also, we denote map-
pings from variables to values by σ, and by T̃ σ the vector that results from applying σ
to each element of T̃ .
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2.2 Polyadic π-Calculus

In the next section we will encode πT into the polyadic π-calculus. The specific di-
alect that we use is derived from πT via three simple modifications: First, the sets
of constructors and deconstructors are assumed to be empty; second, nondeterminis-
tic CCS-like choice of the form P + Q and polyadic input and output prefixes of the
form a(x̃).P or a〈̃b〉, respectively, are admitted, where a and b range over both names
and variables; third, process constants are admitted. They are typically ranged over by
upper-case letters from the beginning of the alphabet, such as A. Process constant defi-

nitions are of the form A(x̃) ∆= P where the free variables of P must be from x̃. There
must be a unique definition for each process constant. The number of actual parameters
in each instantiation of any process constant must be the same as the number of for-
mal parameters in the constant’s definition. The necessary modifications of the above
SOS clauses and the accompanying notion of action are standard. Here, we just give the
semantics of the nondeterministic choice operator:

P
α−→ P ′

P + Q
α−→ P ′

Q
α−→ Q′

P + Q
α−→ Q′

As α ranges over all actions including τ , + is the ordinary CCS-like nonderministic
choice operator.

3 The Encoding of the πT-Calculus

In this section we present the encoding of πT-processes into the polyadic π-calculus.
As in previous work [4], the main issue is encoding values.

The idea is to let encoded processes operate on encoded values only via value identi-
fiers (IDs). To this end, an integrity manager M is set up, which maintains tables of the
existing IDs and the values these correspond to. Whenever an encoded process wants
to operate on one or more encoded values, it must send a specific request carrying the
value IDs to M. M will check whether it already knows the IDs, i.e., whether the IDs
correspond to any actual values: if that is the case, then M will perform the operation;
if not, then the request will deadlock. If the operation requires generating a new value,
M will do so, and it will also generate a new ID that it will associate with the value.
Completion will be signalled on a dedicated channel that has been supplied when the
request was issued. The channel carries an ID which refers to the result of the operation,
if there was any.

M thus shields encoded processes from any malformed complex values that might
be sent to them by π-observers which are not encodings of πT processes. Moreover,
as πT- and π-processes have the same pure synchronisation capabilities, π-observers
are unable to do anything to encoded πT-processes that encoded πT-observers cannot
already do. The only requirement is that no encoded πT-process may ever get connected
to a “fake” integrity manager. This is assured by (a) restricting the channels that are used
for interacting with M and (b) setting up a uni-directional firewall F via which M can
receive requests from an external observer via duplicate, non-restricted channels.

The encoding of πT processes is constructed using one encoding function �·� for
processes as such (section 3.1), and one encoding function �·�r of values occurring in
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the processes (section 3.2), parameterised by a location r used to represent the value.
M is presented in section 3.3.

The full encoding of a πT process P is thus �P � = (ν KM)(�P � | M | F), and our
main theorem

P �may Q iff �P � �may �Q�.

The encoded processes communicate with M using a simple protocol over the free
names of M, which we denote by KM. Below we describe their use and the parameters
passed over them.

input : (i, r) i is the ID of the channel the process wants to input a value over; r is a
fresh name over which the process will receive the value (itself an ID).

output : (i, j, r) i is the ID of the channel the process wants to output a value over; j
is the ID of the value to be sent; r is a fresh name which will be used for synchro-
nisation when the output has been performed by M.

applyE : (̃i, r) (for each deconstructor equation E : d(G1, . . . , Gk) = x, where |̃i| =
k). ĩ are the IDs of the actual components of the value pattern; r is a fresh name
where the ID of the value corresponding to x (if any) can be received by the process.

r : (i) (for each value occurring in the process). Each value used in the process is rep-
resented by a fresh name r, where the process can receive the ID of the value, e.g.
to pass in the above operations.

The encoded values register with M by communicating with it over two additional
channels:

new : (n, r) n is a πT name occurring in the source process; r is a name where the ID
of the name can be received.

newf : (x̃, r) (for each constructor f , where |x̃| = ar[f ]). x̃ are the actual components
of the constructor f ; r is a name where the ID of the constructed value f(x̃) can be
received.

3.1 Encoding Processes

The encoding of processes is homomorphic for 0, |, (ν) and ! operators:

�0� = 0 �P | Q� = �P � | �Q� �(ν n) P � = (ν n)�P � �! P � = !�P �

Input and output prefixes (below) encode the subject, request its ID, and contacts M for
doing the actual input or output. In the case of input, the response channel s is used for
performing the input, binding the object x, while in the case of output, M performs the
output and responds with a pure synchronisation. r, s, t, i and j are fresh.

�T (x).P � = (ν r)(�T �r | r(i).input〈i, ν s〉.s(x).�P �)

�T 〈U〉.P � = (ν r, s)(�T �r | �U�s | r(i).s(j).output〈i, j, ν t〉.t().�P �)

The conditional retrieves the IDs of the encodings of the compared values and tests
them for identity. (M ensures that identical values have the same ID.) r, s, i and j are
fresh.

�if T = U then P else Q� = (ν r, s)(�T �r | �U�s | r(i).s(j).if i = j then �P � else �Q�)
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Fig. 1. Defining equation of integrity manager and empty value table

M = (ν lock, unlock, put, getId, getAlias, [∀f ∈ F. putf , getIdf , getArgIdsf ], lookUp)(
EmptyValTbl(put, getId, getAlias, [∀f ∈ F.getIdf , getArgIdsf ], lookUp)
| NameRegistrar(lock, unlock, put, getId, lookUp, new)
| ∏

f∈F
ConsTermRegistrarf (lock, unlock, putf , getIdf , newf )

| InputInterpreter(lock, unlock, getAlias, input)
| OutputInterpreter(lock, unlock, getAlias, lookUp, output)
| ∏

E∈E
EquationInterpreterE(lock, unlock, [∀f ∈ F.getArgIdsf ], applyE)

| Mutex(lock, unlock))

The let processes use a deconstructor. Each deconstructor d of arity k has a set of
associated deconstructor equations Ed,k. Each such equation E has a handler in M,
contacted over applyE . In the encoding of let below (left), all such handlers are applied
in parallel (line 2), and the first one to complete (line 3) locks the others out (using the
one-time lock u on line 1). r̃, ĩ and u are fresh.

�let x = d(T1, . . . , Tk) in P � =
(ν r1, . . . , rk)(

�T1�r1 | . . . | �Tk�rk

| r1(i1). . . . rk(ik).
(ν u)(

u〈〉 (1)
| ∏

E∈Ed,k
(

applyE〈i1, . . . , ik, ν r〉. (2)
r(x).u().�P �) (3)

�f(T1, . . . , Tar[f ])�r

= (ν r1, . . . , rar[f ])(
�T1�r1 | . . . | �Tar[f ]�rar[f] (4)

| r1(i1). . . . rar[f ](iar[f ]). (5)
newf 〈i1, . . . , iar[f ], r〉) (6)

�n�r = new〈n, r〉
�x�r = r〈x〉

3.2 Encoding Value Terms

Value terms come in three kinds: constructor terms, names, and variables. Their encod-
ing is above (right). Terms using a constructor f encode their component values (line
4), and supply their IDs (line 5) to the newf handler (line 6). Names are encoded by
calling the new handler of M, while occurrences of variables will always be substituted
at runtime by an ID, which will then be returned.

3.3 Integrity Manager M

M is shown in Figure 1. The names input, output, new, newf for all f ∈ F, and
applyE for all E ∈ E are free in M. They may be used by π-calculus observers to
interact with any encoded process, but thanks to the firewall, they can not interfere in
the communication between the encoded processes and M.

M uses an initially empty value table (EmptyValTbl) to maintain the correspon-
dence between values and their value IDs. Each name in the table has an alias, used
for the actual input and output, such that M can monitor all values passed, making sure
they are value IDs. For each constructor in the table, the IDs of its subcomponents are
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maintained. The Mutex is used as a mutual exclusion lock for the table. (The reader
may refer to [5] for parts that have to be left out here due to a lack of space.)

Additional components of M insert new values into the tables, if necessary:

NameRegistrar. The first time a name is used in the encoded process, the name
registrar adds its corresponding ID and alias to the name table. Later uses of the
name only result in a lookup; the ID and alias is maintained.

ConsTermRegistrarf (for each f ∈ F). The constructor term registrars perform
the corresponding function for values built by constructors f ; the ID of the value
and its components is maintained, and together the name and constructor term reg-
istrars ensure that identical values have the same ID.

The remaining components of M are (1) the handlers for input and output, Input-
Interpreter and OutputInterpreter, which ensure that all names used as chan-
nels, and values passed over them, have appropriate table entries and (2) the decon-
structor equation handlers EquationInterpreterE , used to match a deconstructor
application against deconstructor equations.

Value Table. IDs of names and constructors are added to the value table by commu-
nication over put and putf , respectively; they can be retrieved over getId and getIdf .
The lookUp is used to verify that an ID is in the table. Subcomponents of constructors
can be retrieved over getArgIds.

The table is built by appending table cells to the initial empty table. Such a cell
is either a NameEntry or a ConsTermEntryf (f ∈ F). All requests to retrieve
information have among their parameters the names r+, r−, which are used for the
response. Each cell checks if it should handle the request, and if not, passes it on to the
next cell. If no cell handles the request, the EmptyValTbl eventually signals on r−.

Name Registrar. Name records maintain the IDs and aliases of names. The latter are the
channels used internally for communication, to make sure all objects passed are value
IDs. The name registrar first checks if the supplied name is a value ID, supplied by a
“malicious” observer: this is an error, and the requester gets no reply. If it is not a value
ID, it checks if the name is in the name table; in that case it returns its ID, otherwise it
adds the name together with its new ID and alias to the name table, adds the ID to the
ID table (since all IDs used must be there), and responds with the ID.

Constructor Term Registrars. The constructor registrars for a constructor f is a varia-
tion of the name registrar: it checks that each component value is in the ID table (and
thus is a valid value in the encoding), and if they are, either returns the ID of the con-
structed term (if it is already there) or puts in an association between the constructed
term and its (new) ID, puts the ID in the ID table, and returns it.

Equation Interpreters. Given an equation E : d(G1, . . . , Gar[E])
∆= x, an interpreter

for E is given a vector of ar[E] actual value IDs, and tries to match each value ID
against the corresponding value pattern Gi of the equation. If it succeeds, the value ID
corresponding to x of the equation is returned over the result channel r. If it fails, no
result is given.
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Given E : d(G1, . . . , Gar[E])
∆= x,

EquationInterpreterE(lock, unlock,[∀f ∈ F.getArgIdsf ], lookUp,applyE)
∆
=

! applyE(i1, . . . , iar[E], r).lock().lookUp〈i1, ν s+
1 , ν s−1 〉

( s−1 ().unlock〈〉
+ s+

1 ().
...

lookUp〈iar[E], ν s+
ar[E], ν s−ar[E]〉.

( s−ar[f ]().unlock〈〉
+ s+

ar[f ]().�G1, i1, . . . , Gar[E], iar[E], ∅�) · · · )

where the �H1, j1, . . . , Hk, jk, S�-construct, k ≥ 0, handles the matching of actual
component values against components of the equation. Its definition is recursive.

1. If k = 0, then �S� = unlock〈〉.r〈x〉.
2. If k ≥ 1 and H1 = z for some variable z �∈ S,

�H1, j1, . . . , Hk, jk, S� = �H2, j2, . . . , Hk, jk, S ∪ {z}�{z := j1}
3. If k ≥ 1 and H1 = z for some variable z ∈ S,

�H1, j1, . . . , Hk, jk, S� = if z = j1 then �H2, j2, . . . , Hk, jk, S�

else unlock〈〉
4. If k ≥ 1 and H1 = f(H ′

1, . . . , H
′
ar[f ]) for some constructor f and arguments H ′

1,
. . . , H ′

ar[f ], then:

�H1, j1, . . . , Hk, jk, S� = getArgIdsf 〈j1, ν t+, ν t−〉.
( t−().unlock〈〉
+ t+(j′1, . . . , j

′
ar[f ]).

�H ′
1, j

′
1, . . . , H

′
ar[f ], j

′
ar[f ],H2, j2, . . . , Hk, jk, S�)

where j′1, . . . , j′ar[f ] are fresh.

Communication Interpreters. The communication interpreters handle the input and
output requests to M. Both look up the alias of the subject channel in the name table;
the input handler returns this so the encoded input prefix can perform the input and bind
the object variable in the correct context; the output handler looks up the object ID and
performs the output on behalf of the encoded output prefix, and synchronises on the
result channel when done.

InputInterpreter(
lock, unlock, getAlias, input

)
∆
= ! input(i, r).lock().

getAlias〈i, ν s+, ν s−〉.
( s−().unlock〈〉
+ s+(a).unlock〈〉.a(x).r〈x〉)

OutputInterpreter(
lock, unlock, getAlias, lookUp, output

)
∆
= ! output〈i, j, r〉.lock().

getAlias〈i, ν s+, ν s−〉.
( s−().unlock〈〉
+ s+(a).lookUp〈j, ν t+, ν t−〉

( t−().unlock〈〉
+ t+().unlock〈〉.a〈j〉.r〈〉))
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3.4 Firewall

For every free name n of M, we introduce a distinct fresh name n′ via which external
observers may interact with M and thus indirectly also with any encoded πT-process.
The firewall F receives requests on the channels named with those fresh names and
encodes them to requests on the corresponding internal channels.

4 Full Abstraction

The relevance of may-testing equivalence for analysing security protocols has been
stated elsewhere (see e.g. [3]). For this reason, we keep this section relatively technical
apart from stating an outline of the long and complex proof of the full abstraction result.
Recall the full encoding of a πT process P is �P � = (ν KM)(�P � | M | F).

Definition 1. 1. An observer is a process that may use a distinguished name $. An
action on channel $ is a success signal.

2. A test is a parallel composition P | O of a process P and an observer O.
3. A process P may pass a test P | O if some sequence of τ -steps of P | O has a state

in which O signals success. Formally, we denote this property by P may O.
4. Any two processes P and Q are may-testing equivalent if P may O if and only if

Q may O for every observer O – in other words, the tests P and Q may pass are
the same. We denote this property by P �may Q.

Theorem 2. Given any πT-processes P and Q, P �may Q iff �P � �may �Q�.

Proof. (Outline) The proof has two main steps:

1. This step consists of proving that may-tests are preserved, that is to say, proving that
the encodings of two πT processes satisfy the same tests if the tests are encodings of
πT tests. This result is analogous to earlier work [4] but, at the same time, it is by
far more difficult. The reason is that, unlike [4], the global context in the form of the
integrity manager has to be taken into account. The solution consists of working with
a set-theoretical abstraction of the integrity manager that allows us to consider only
factions of it as we exploit the syntax-directed way in which the pure encoding � � is
defined. In this way we are able to re-instantiate the concept of an ancestor relation
introduced in [4] to prove both a forward and a backward operational correspondence
between unencoded and encoded process-observer couplings. The preservation of may
tests is then an easy corollary once we also have an operational correspondence between
abstract and concrete integrity management.

2. This step mainly consists of using the result from Step 1 in obtaining a π-calculus
trace characterisation of πT-may-testing equivalence. This property is reminiscent of
trace characterisations of may-testing equivalence in other settings (see e.g. [10]). All
what is left is then to take the firewall into account to obtain the final full-abstraction
result.

The full proof can be found in [5].
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5 Related Work

Arbitrary equations between data terms are the most crucial feature of the applied π-
calculus that is lacking from πT. Also, we require that deconstructors are only used in
let-expressions. πT is therefore in between the applied π-calculus and the spi calculus
in that it resembles Borgström, Briais and Nestmann’s parameterised spi calculus [7].
These simplifications entail a loss of expressiveness when describing security protocols.
The advantage is that we can still give a straightforward Structural Operational Seman-
tics (SOS) for agents without having to first define a complex evaluation semantics for
value terms. This simplifies our proofs to a great extent.

Full abstraction in the kind of encoding considered here is difficult to achieve. Mil-
ner’s encoding of the λ-calculus [12] is not fully abstract. Sangiorgi [16] demonstrates
full abstraction for an encoding from the higher order (HO) π-calculus. The main dif-
ference is that in HOπ the language does not contain an equality test for HO values. In
πT there is such a test for data terms. This means that in the encoding the interior of a
term must, so to speak, be open for inspection, and this makes our encoding and proof
very different.

The applied π-calculus, the spi calculus [3], Burrows, Abadi and Needham’s logic
of authentication [9], which is nowadays known as BAN logic, and a number of other
modelling and analysis techniques for security protocols rest on the Dolev-Yao assump-
tion [11]. This means that the underlying crypto-system is considered unbreakable, so
that the protocol logic on top of that is the only concern. A central aspect of all of these
lines of work is that an analysis makes it necessary to explicitly represent the knowledge
that an observer of a supposedly secure system can accumulate over time. This situation
is similar in mobile process approaches: Observer knowledge has there been incorpo-
rated in notions of bisimulation and testing within the framework of the spi calculus;
Borgström and Nestmann give a good overview of bisimulation for the spi calculus in
[8]; Boreale, De Nicola and Pugliese have, besides treating bisimulation, shown how to
take account of may-testing for the spi calculus in terms of knowledge-enriched traces
[6]. In contrast to all of them our characterisation seems to be unique in that all ob-
server knowledge is internalised. That is to say, it appears on the calculus level, not on
the meta-level. In this sense it could be considered much closer to traditional process
algebra methodology than the above-mentioned approaches.

6 Conclusion

We have presented a new encoding from the value-enriched mobile process calculus
πT into the polyadic π-calculus. The cornerstone of the translation is an integrity man-
ager that acts as a clearing house for all operations that involve translated values. It
is protected by a firewall so that it cannot be impersonated by a hostile environment.
Similar techniques were used in [2]. This encoding solves the long open full abstraction
problem for πT-like calculi.

Our encoding is not compositional since it has the integrity manager and the firewall
as a global context. While compositionality has been put forward as a criterion for
whether an encoding from one calculus to the other is good [15], it can be argued
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(see [14]) that these criteria are too strong for practical purposes, and that by allowing
a top-level context (but keeping the inner encoding compositional), many practically or
theoretically motivated encodings turn out to be “good”.

One way to interpret our result is that the π-calculus can provide as much “security”
in the sense of protected data values as the πT-calculus and its instantiations such as
the spi calculus. The means to achieve this are an integrity manager and a firewall.
Thus we could claim to have proved that integrity management plus firewalling is a
viable security philosophy. Modulo possible termonological differences this belief may
actually be common; our contribution is to prove the correctness of a formal statement
of it.
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