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Abstract. Sensor networks operating in the 2.4 GHz band often face
cross-technology interference from co-located WiFi and Bluetooth de-
vices. To enable effective interference mitigation, a sensor network needs
to know the type of interference it is exposed to. However, existing ap-
proaches to interference detection are not able to handle multiple concur-
rent sources of interference. In this paper, we address the problem of iden-
tifying multiple channel activities impairing a sensor network’s commu-
nication, such as simultaneous WiFi traffic and Bluetooth data transfers.
We present SpeckSense, an interference detector that distinguishes be-
tween different types of interference using a unsupervised learning tech-
nique. Additionally, SpeckSense features a classifier that distinguishes
between moderate and heavy channel traffic, and also identifies WiFi
beacons. In doing so, it facilitates interference avoidance through chan-
nel blacklisting. We evaluate SpeckSense on common mote hardware and
show how it classifies concurrent interference under real-world settings.
We also show how SpeckSense improves the performance of an existing
multichannel data collection protocol by 30%.

1 Introduction

Low-power wireless sensor networks (WSN) operating in the 2.4 GHz spectrum
often face interference from other wireless technologies that share the same
frequency band. Typically, IEEE 802.15.4-compliant sensor nodes compete for
channel access with an increasing number of WiFi and Bluetooth devices such
as laptops, smartphones, and tablet PCs. This results in long contention delays
and collisions that degrade sensor network performance [1, 2].

Several mitigation approaches [1–4] have been proposed to tackle the prob-
lem of external interference in sensor networks. Knowing the type of interference
enables a sensor node to choose a suitable mitigation strategy [1, 5, 6]. In this
regard, interference classification is prerequisite towards mitigation. Recent work
on interference classification [6,7] addresses the problem by mapping RSSI obser-
vations or patterns of corrupted packets to a known class of interference such as
WiFi, Bluetooth or microwave ovens. Such designs are intrinsically constrained
by a direct mapping of channel observations to a fixed number of interference
classes. In particular, they do not address the predominant case of multi-source



interference, i. e., multiple device types and instances that transmit on a channel.
For example, a combination of WiFi and Bluetooth interference on a channel is
likely to be reported as either WiFi or Bluetooth, depending on the dominant
interferer. In this regard, the detection of multiple interfering sources offers inter-
esting insights on channel utilization. The number of distinct interfering sources
on a channel has a marked influence on its utilization – for example, concurrent
traffic over WiFi and Bluetooth traffic has a greater interference impact than
either in isolation. Moreover, interfering channel traffic from multiple sources
can be independently inspected for temporal patterns such as periodicity. This
enables a wireless device to identify periodic control signals on an active WiFi
channel, and blacklist it for sensor network operation. Lastly, multiple inter-
ference detection enables wireless devices to disambiguate external interference
from in-network channel traffic. This provides a clearer context for motivating
interference mitigation mechanisms as in [1, 2].

We present SpeckSense, a service that enables nodes to detect and classify
multiple sources of interference in the 2.4 GHz band. In doing so, SpeckSense
provides explicit recommendations on which channels are good for use. In con-
trast to earlier work [6,8], SpeckSense performs an explicit interference detection
step prior to classification. The detection step uses RSSI values to account for
channel observations, and clusters them based on pre-determined RSSI intervals
in which they belong and also the time duration for which a sequence of similar
RSSI values persist. Each cluster thus represents a distinct interference pattern,
which is handed to a classification algorithm.

SpeckSense is primarily designed for avoiding WiFi and other forms of severe
interference in indoor WSN deployments. To this end, SpeckSense performs two
main operations — distinguishing between different forms of data traffic (WiFi
beacons, periodic and non-periodic channel traffic) and identifying the number
of sources transmitting periodic signals – for example, WiFi access points. Speck-
Sense uses the average time interval between recurring RSSI patterns to distin-
guish between conditions of moderate (web browsing) and intense (bulk data
transfer) channel traffic. In doing so, SpeckSense provides a channel utilization
measure that determines whether the channel is suitable for reliable commu-
nication. Furthermore, identifying beacons enables a sensor node to effectively
blacklist channels affected by WiFi interference.

We evaluate SpeckSense in an office corridor characterized by many interfer-
ence sources that include several WiFi and Bluetooth-enabled devices. We show
that SpeckSense distinguishes between the predominant sources of interference,
and in particular, identifies multiple WiFi access points in the presence of data
traffic. We demonstrate the usefulness of SpeckSense by adding it to a multi-
channel data collection protocol [2]. We evaluate the combined solution on a
large-scale indoor testbed and observe a significant improvement in data yield
facilitated by avoiding interfered channels.

In this paper we make the following contributions:

– We design and develop SpeckSense, a new approach for detecting and clas-
sifying multiple concurrent sources of interference in the 2.4 GHz spectrum.



– We facilitate interference avoidance by distinguishing between different ex-
tremes of channel traffic (web browsing vs. file transfers), and identifying
periodic WiFi beacons.

– We show how an existing data collection protocol can benefit from using
SpeckSense to recommend WiFi-free channels. Our experimental evaluation
on a large testbed comprising 85 nodes shows a 30% improvement in data
yield when using SpeckSense.

2 SpeckSense Design
Indoor environments such as offices or residential areas are witness to concurrent
wireless activity across multiple standards such as WiFi, Bluetooth and IEEE
802.15.4 devices that operate in the 2.4 GHz spectrum. The resulting channel
interference is therefore a combination of multiple transmissions that differ from
each other in radio bit rate, message size, transmit power, channel attenuation
and timing constraints [8]. As a result, their respective emissions exhibit char-
acteristic patterns in intensity, duration, and timing. For example, emissions
from a WiFi access point are distinctly different from a Bluetooth device’s emis-
sions. The central idea of SpeckSense is to disambiguate the concurrent emissions
from the interferers so that the present interferers can be identified. To do so,
SpeckSense accounts for collective emissions from the interferers by sampling the
received signal strength (RSSI), i.e., the energy in the channel.

SpeckSense comprises two components, that perform interference detection
and classification in sequence. The interference detection uses an RSSI sampler
that captures the emissions from all interferers as a series of RSSI bursts. Inter-
ference detection involves an unsupervised learning approach, i. e., clustering, to
distinguish the bursts from the different interferers. The output of the interfer-
ence detection component is passed to a classification component that inspects
each cluster for periodicity. Doing so enables SpeckSense to identify WiFi bea-
cons on a given channel, as well as periodic traffic from other sources besides
WiFi routers. Additionally, the classification component quantifies channel oc-
cupancy, which enables blacklisting of channels that are severely interfered.

Unlike earlier work [6, 8], SpeckSense decouples interference detection from
explicit classification. This decoupling allows distinguishing the emissions from
multiple interferers, and also classifying them in isolation. We now describe
SpeckSense’s components in more detail.

3 Interference Detection
SpeckSense’s interference detection consists of an RSSI sampler and a clustering
process, which are described in the following subsections.

3.1 RSSI Sampler

The RSSI sampler captures the energy in the channel due to the interferers’
emissions, e.g., WiFi beacons or Bluetooth data packets. It continuously reads
the RSSI register of the sensor nodes’ radio chip. The readings are quantized,



run-length encoded, and so-called bursts, i. e., contiguous sequence of high RSSI
samples, are identified. The detected bursts are then processed by the clustering
component.

Quantization is motivated by two observations. First, the emissions from
a given interferer may vary slightly over time in their strength. These minor
variations are not relevant to detecting the interferer, and hence they can be ab-
stracted away by quantizing the RSSI reading. Second, storing raw RSSI readings
is prohibitively memory-intense on a constrained sensor node. Storing quantized
readings in memory is a simple means to reduce the memory requirement.

The number of quantization intervals represents a trade-off between the num-
ber of distinctly observable RSSI patterns and memory overhead. Using a higher
number of intervals allows to capture more distinct channel activities, but re-
quires more memory to store the observations. We establish power level 1 for
RSSI values below −90 dBm, and divide the RSSI range above > −90 dBm
evenly over the remaining number of levels. For example, using four quantiza-
tion intervals would require defining the following power levels: power level 1
(RSSI ≤ −90 dBm), power level 2 (−90 dBm < RSSI ≤ −60 dBm), power level
3 (−60 dBm < RSSI ≤ −30 dBm), and power level 4 (−30 dBm < RSSI).

The quantized RSSI readings are then run-length encoded to further re-
duce the memory overhead. Run-length encoding works by simply counting the
number of subsequent occurrences of a power level. For example, consider the
following RSSI sequence: −92, −91, −57, −58, −57, −29, −28, −59, −59, −59,
−94. Quantization and run-length encoding produces the following sequence of
2D vectors: (1, 2), (3, 3), (4, 2), (3, 3), (1, 1). The first component of each vector
denotes the power level, and the second component denotes the duration of the
observation.

Finally, the RSSI sampler extracts bursts of activity from the quantized,
run-length encoded vector sequence. A burst is defined by a contiguous sub-
sequence where the channel is not idle, i.e., the power level is greater than
1. The RSSI sampler represents the burst by the weighted mean power level
and the total duration of the subsequence. The previous example contains the
non-idle subsequence (3, 3), (4, 2), (3, 3), which corresponds to the RSSI burst:
( 3×3+4×2+3×3

3+2+3 , 3 + 2 + 3) = (3.25, 8).

SpeckSense’s interference classification relies on the temporal patterns of an
interferer’s emissions, so it is important that processing a sample on a sensor
node takes a constant amount of time. Otherwise, the duration value in an RSSI
burst would be misleading. In our implementation, processing an RSSI sample
(reading it, quantizing it, and performing run-length encoding) takes 47 µs on
average, giving a sampling rate of 21 KHz. This allows the detection of energy
levels from WiFi beacons and Bluetooth data packets that have transmission
times several magnitudes higher than 47 µs [8, 9]. More crucially, the variance
in the processing delay is 0.04 µs, which is low enough to assume practically
constant sampling speed. As per the suggestions by Boano et al., the RSSI
sampler is implemented to avoid saturation in the radio transceiver’s automatic
gain control [10].



3.2 Clustering Algorithm

The clustering component groups together RSSI bursts that are likely to come
from the same interferer. In a later step, the clusters can then be analyzed
independently from each other to classify the interferer.

Prior to clustering, the RSSI bursts are normalized. Note that the mean
power level of a burst can be at most 4, whereas the duration of a burst can
take much larger values. Thus, normalization is required to avoid burst duration
having a dominating influence on the clustering. Considering that the emissions
could take 10 ms (microwave oven emissions), we scale up the average power
level for all bursts by a factor of 16.

SpeckSense uses the k-means algorithm to group a set of normalized RSSI
bursts B into clusters. k-means clustering is a general algorithm to group a set
of observations into clusters such that similar observations belong to the same
cluster [11]. We briefly describe the algorithm’s operation.

Assume the bursts in B are to be grouped into k clusters. The cluster i
is represented by a 2D vector µi called its cluster center. The vector’s first
component represents the average power level of bursts in the cluster, and the
second component represents the average duration. Initially, the k cluster centers
are chosen at random from the RSSI bursts in B. Then, the algorithm repeatedly
assigns RSSI bursts to clusters and updates cluster centers until a termination
condition is met.

Cluster assignment Each RSSI burst is assigned to the cluster that has the
closest center. More specifically, an RSSI burst bi ∈ B is assigned to the cluster
j whose center has the minimal Euclidean distance to bi. We denote the cluster
center to which bi is assigned by m(bi), defined as m(bi) = argminµj‖bi − µj‖.

Cluster center update After the cluster assignment, the cluster centers are re-
computed. Let Mj be the set of bursts that were assigned to the jth cluster in
the preceding step. Then, the cluster center µj is updated to be the average of
all bursts in Mj . Specifically, µj = 1

|Mj |
∑
b∈Mj

b.

Termination The preceding two steps are repeated until a cost function (which
is evaluated after each update step) converges, i. e., decreases by less than a fixed
threshold. The cost function C describes how close the bursts are to the centers of
their assigned clusters, and thus intuitively reflects the quality of the clustering:
C = 1

|B|
∑
bi∈B‖bi − m(bi)‖2. We have empirically found that a threshold of

0.001 gives good clustering performance.
The described algorithm groups the RSSI bursts into k clusters. However, the

number of clusters k, which is related to the number of interferers, is not known
a priori. Therefore, SpeckSense iteratively executes the algorithm for different
values of k. Starting from k = 1, the cost function at termination is noted and k
is increased by one. When the difference in cost at termination for k and k + 1
is less than 0.001, the algorithm terminates.

In summary, the clustering component arranges the RSSI bursts into groups
such that bursts that are similar in duration and power level are assigned to
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Fig. 1. Clusters detected by SpeckSense in the anechoic chamber for different interfer-
ence scenarios. Each marker represents an RSSI burst, and the marker’s shape indicates
which cluster the burst was assigned to. The number of clusters found by SpeckSense
corresponds to the number of interferers.

the same group. The underlying intuition is that similar bursts are likely to
come from the same interferer. The clustering component outputs the number
of clusters k that yielded the best clustering, the center clusters µ1, . . . , µk, and
which burst was assigned to which cluster. To validate SpeckSense’s ability to
cluster different interference patterns, controlled experiments were performed
in an anechoic chamber. Figures 1(a), 1(b) and 1(c) show the different clusters
detected by SpeckSense in a set of artificially induced interference scenarios. The
specific cases comprise beacons from a WiFi Access Point AP1, a combination
of WiFi beacons from AP1 and Bluetooth traffic between a pair of devices, and
beacons from two WiFi access points AP1 and AP2. Each point in the figures
represents a RSSI burst, and bursts belonging to a cluster have the same marker.
The figures show that it is possible to disambiguate between different emissions
based on average burst size (Figure 1(b)), as well as power level (Figure 1(c)).

Note that emissions from different sources may overlap in time, for exam-
ple, microwave emissions overlapping with Bluetooth bursts. In such cases, the
clustering algorithm detects only the dominant interferer (i. e., the microwave).
SpeckSense addresses this concern by observing RSSI values over a longer du-
ration (i. e., one second), thereby increasing the likelihood of detecting multiple
interference sources.

4 Interference Classification

SpeckSense classifies interference by inspecting each detected cluster for tempo-
ral patterns in RSSI bursts. In doing so, SpeckSense informs link-layer protocols
whether the observed channel activity is periodic, bursty or a combination of
both. This facilitates a meaningful assessment of channel quality and enables
nodes to make informed decisions on channel selection. In this regard, Speck-
Sense deviates from earlier classification work such as SoNIC [6] that maps chan-
nel observations to specific labels such as WiFi, Bluetooth and microwave. This
section elaborates on two aspects of interference classification, namely distin-
guishing different extremes of prevalent 2.4 GHz data traffic and identifying
periodic signals such as WiFi beacons.
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Fig. 2. Empirical CDFs of the inter-burst separations per detected cluster, for different
interference scenarios. SpeckSense distinguishes between different extremes of channel
traffic, using a 100 ms threshold on the observed average inter-burst separation.

4.1 Distinguishing Channel Traffic

Interference in the 2.4 GHz spectrum is largely attributed to concurrent traffic
over WiFi and Bluetooth, as well as electromagnetic emissions from microwave
ovens. The impact from channel interference on a wireless network application
is determined by several factors such as device usage patterns, application data
requests as well as underlying communication protocols in use. Therefore, it
is reasonable to expect that certain applications contribute to a greater degree
towards channel interference than others – for example, a file download over WiFi
causes more channel interference than web browsing. SpeckSense distinguishes
between diverse applications at the physical layer based on their characteristic
contribution to channel traffic. Specifically, SpeckSense computes the average
inter-burst separation for each interference cluster, and checks whether it is below
a predetermined threshold. If so, the channel is said to be severely interfered and
hence blacklisted for sensor network operation.

To empirically determine the threshold inter-burst separation, we conduct
experiments involving controlled interference, in which SpeckSense gathers RSSI
samples for different scenarios that included a Bluetooth file transfer, WiFi file
download, WiFi web browsing, video streaming over WiFi, WiFi repeater traffic,



and microwave oven emissions. Figure 2 shows the cumulative distribution of
the inter-burst separation for different clusters for some of the aforementioned
cases (for additional details, refer to [12]). We observe that for cases where
bursty traffic is involved, such as in Figures 2(b), and 2(d), 80% of the inter-
burst separations are below 100 ms. Note that channel activity bursts owing
to Bluetooth transfers and WiFi-enabled web browsing are not as frequent as
WiFi file download and repeater traffic. This is attributed to factors such as
Bluetooth frequency hopping that effectively schedules packet transmissions over
non-overlapping channels, as well as temporally sparse patterns in web browsing.
Further, a reduced average inter-burst separation is correlated to an increase in
the number of detected clusters.

Based on these observations, SpeckSense uses an average inter-burst separa-
tion threshold of 100 ms, which has shown good results in distinguishing condi-
tions of light channel traffic (cf. Figures 2(a), and 2(c)) from severe interference
(cf. Figures 2(b) and 2(d)).

4.2 Identifying Periodic Beacons

Concurrent traffic over WiFi constitutes a major part of cross-technology in-
terference in the 2.4 GHz ISM band [1]. Therefore it is necessary that a sensor
node avoids operating on channels that overlap with WiFi activity. While usage
patterns of WiFi may vary over time depending on varying user needs, there is
a stable pattern in control signaling on the WiFi channels. Predominant IEEE
802.11 management frames include WiFi beacons, probe responses from access
points, and probe requests from WiFi clients. Particularly, beacon messages are
sent at a default periodic interval of 100 ms. Identifying them can thus be re-
garded as an indication of WiFi presence. Towards this end, SpeckSense uses the
results from its multi-source interference detector, and classifies a clustered se-
quence of periodically recurring RSSI bursts as WiFi beacons. This is, however,
a non-trivial problem and entails addressing the following challenges. WiFi man-
agement frames such as probe requests and probe responses may have similar
on-air transmission times as beacons, and are also transmitted over non-periodic
intervals (see Figure 3(a)). Moreover, beacons from multiple WiFi access points
within interference range may have similar on-air transmission times and RSSI
values (see Figure 3(b)), and get clustered together. The random occurrences of
WiFi probes and beacons from multiple APs collectively represent a challenge
in identifying periodic patterns.

Accounting for these challenges, SpeckSense employs an algorithm (see Algo-
rithm 1) that is run once for each cluster obtained from the interference detection
outlined in Section 3.2. In every run, the input to the algorithm is a temporal
sequence of RSSI bursts from a cluster. Let ti denote the time at which the ith
burst in the cluster was recorded by the node, where 1 ≤ i ≤ n. The inter-burst
separation is denoted by the sequence dT = (t1 − t0, t2 − t1, . . . , tn − tn−1).

The algorithm populates a set L with values denoting time periods at which
RSSI bursts are captured. This is performed by inspecting every inter-burst
separation value in the sequence dT , and checking to see whether they are already



(a) Periodic WiFi beacons interspersed by
probe messages.

(b) Periodic WiFi beacons from two access
points

Fig. 3. WiFi beacons may be interspersed by probe messages or beacons from other
access points, making their identification non-trivial.

Algorithm 1 Algorithm to detect periodic bursts

1: Inputs
2: . n is the number of RSSI bursts over

time T
3: . dT = (d1t , d

2
t . . . d

n−1
t ) is the sequence

of inter-burst separations
4: Outputs
5: . P (dτ ) is the confidence value for every
dτ ∈ L

6: . tp is the detected periodicity of the
sequence

7:
8: L← ∅
9: for dit ∈ dT AddToSet(L, dit) end for

10: for dit ∈ (d1t , d
2
t . . . d

n−1
t ) do

11: s← dit
12: for djt ∈ (di+1

t , di+2
t . . . dn−1

t ) do
13: s← s+ djt
14: UpdateSet(L, s)
15: end for
16: end for
17: for each dτ ∈ L do
18: nτ ← b Tdτ c
19: P (dτ ) = 2C(dτ )/(nτ (nτ + 1))
20: end for
21: tp = argmaxdτP (dτ )

included in the set L (Procedures 1, line 2 in AddToSet). Specifically, the check
takes the form of a modulus operation, such that an inter-burst separation of
kdτ is not added to L, if dτ has already been included. The modulo operation
allows a certain variance εδ to account for factors such as clock speed variations
of the node recording RSSI, as well as channel backoffs by the interfering source.
Setting εδ to 7 RSSI sampling intervals allows a jitter of 2εδ ≈ 0.65 ms, which
we have found to empirically give good results.

After populating L, the algorithm maps every dτ ∈ L to a counter value
C(dτ ). C(dτ ) is a measure of how periodic the RSSI sequence is in dτ . Intuitively,
the algorithm checks over a time window T, whether there are RSSI bursts at
times dτ , 2dτ , 3dτ . . . kdτ , where k = b Tdτ c. Since the entries in L are determined

from dT , this step is performed by scanning every value dit ∈ dT in sequence.
For every dit, the algorithm adds the inter-burst separations from di+1

t to dn−1
t ,

and checks at each step, whether the partial sum is periodic in any dτ ∈ L
(Procedures 1, line 2 in UpdateSet). If not, the sum is added to the list, and
its count is set to 1 (Procedures 1, lines 5–6 in UpdateSet). In general, if nτ
denotes the number of RSSI bursts that are periodic in dτ over time T , then
nτ = b Tdτ c. This results in a maximum of 1

2nτ (nτ + 1) summations that are

periodic in dτ , or equivalently, C(dτ ) ≤ 1
2nτ (nτ + 1). Therefore, the fraction

P (dτ ) = 2C(dτ )/(nτ (nτ + 1)) represents a normalized confidence measure for



Procedures 1 Updating entries in candidate set L

1: procedure AddToSet(L, dt)
2: if ∀dτ ∈ L, dt (mod dτ ) ∈

(εδ, dτ − εδ) then
3: L← L ∪ dt
4: C(dt)← 0
5: end if
6: end procedure

1: procedure UpdateSet(L, dt)
2: if ∃dτ ∈ L|dt (mod dτ ) 6∈

(ε∆, dτ − ε∆) then
3: C(dτ )← C(dτ ) + 1
4: else
5: L← L ∪ dt
6: C(dt)← 1
7: end if
8: end procedure

periodicity in dτ . Possible values for P (dτ ) range from 0 and can also exceed
1, especially when multiple RSSI bursts occur with the same periodicity, as in
Figure 3(b). The periodicity check in UpdateSet is allowed a greater threshold,
i. e., ε∆ > εδ, in order to to account for accumulated variance over summing up
inter-burst separations. We find that setting ε∆ to 30 RSSI sampling intervals,
or approximately 1.4 ms, gives good results. SpeckSense uses round(P (dτ )) as a
measure for the number of distinct RSSI subsequences that are periodic in dτ .

The period tp of the RSSI sequence is determined to be argmaxdτP (dτ ), with
the additional constraint, round(P (dτ )) ≥ 1. The value of tp is approximately 100
ms for WiFi beacons, which is the default beaconing interval on most WiFi access
points. Algorithm 1, however, is also generally applicable to detect RSSI bursts
of any period, in contrast to other approaches [9, 13] that explicitly check for
predetermined values. This makes it a viable option to detect and classify other
forms of interference that include periodic transmissions in 802.15.4 networks [14]
as well as microwave bursts [12].

5 Evaluation

We implement SpeckSense on the Tmote Sky hardware featuring a CC2420 radio
transceiver. There are, however, no special features that prevent porting Speck-
Sense to other sensor node hardware platforms that allow fast RSSI sampling.
The code for SpeckSense is implemented using the Contiki operating system
and fits within 21 KB of program memory. The overall RAM usage is contained
within 6 KB, of which the clustering algorithm takes only about 4 KB of program
memory and a total of less than 800 bytes of RAM.

We evaluate SpeckSense’s ability to distinguish between multiple sources of
interfering traffic, and its ability to identify the presence of WiFi access points in
the 2.4 GHz band. We conduct our experiments in two indoor environments: an
office corridor and a 85-node indoor testbed that spans three floors. These envi-
ronments represent challenging conditions for SpeckSense because they induce
strong multipath fading. We present our results in the following order. First,
we showcase the multi-source interference detection results of SpeckSense from
the office corridor. Then, we show how SpeckSense improves the data gathering
performance of a multichannel protocol [2] on a 85-node testbed.
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5.1 Detecting Concurrent Interferers

Indoor environments represent challenging conditions for SpeckSense due to non-
line of sight between nodes that causes multipath fading effects. The extent of
these effects may also vary over time, e.g., due to people moving, thereby increas-
ing the variance in received signal strength on a sensor node. SpeckSense relies
on RSSI observations to detect interference, so it is important to characterize
its performance in such an environment.
Experimental Setup. The setup in the office corridor is shown in Fig. 4. There
are two WiFi access points (operating on WiFi channel 1 and 11, respectively)
a WiFi repeater (operating on channel 1), as well as four Bluetooth devices.
Sensor nodes run SpeckSense at locations A, B and C. Nodes at location A
face interference from WiFi AP 1 and the WiFi repeater, as well as sporadic
Bluetooth interference. Nodes at location B operate on a different channel and
are exposed to Bluetooth interference as well as beacons from WiFi AP 2. Nodes
at location C face interference from Bluetooth and WiFi data transfers.

We perform over 100 experimental runs in sequence. In each run, nodes per-
form RSSI sampling for 1 second, followed by interference detection and clas-
sification. The RSSI sampler uses four power levels to quantize signal strength
information, as described in Sec. 3.1. Each detected interference cluster is classi-
fied as follows: (i) WiFi beacons that have a period of 100 ms, (ii) periodic traffic
and (iii) non-periodic traffic. To quantify SpeckSense’s performance, we define
a detection rate for every interference class. The detection rate for an interfer-
ence class is measured as the percentage number of runs in which SpeckSense
identifies it.

Data traffic from IEEE 802.15.4 compliant sensor nodes also contributes to
co-channel interference in the 2.4 GHz spectrum. To validate that SpeckSense
can classify multiple interferers even in the presence of WSN activity, we perform
our experiments under two scenarios, namely with and without 802.15.4 traffic.
To generate the channel traffic, we add two sensor nodes to the setup – one node
sends packets every 125 ms, while the other receives them. In every setup, the
sender node is co-located with the node running SpeckSense, and the receiver
node is placed 6 m away from the sender. We refer to these nodes as the 802.15.4
sender and the 802.15.4 receiver.
Results. Figure 5 shows the detection rates for SpeckSense at different locations,
both in the presence and absence of 802.15.4 traffic. Accounting for multipath
fading effects that inhibit a seamless classification, we aggregate the detection
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(c) Loc. C
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(d) Loc. A, with 802.15.4 traffic
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(e) Loc. B, with 802.15.4 traffic
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(f) Loc. C, with 802.15.4 traffic

Fig. 5. Detection rates for the three locations in the office corridor. For window sizes
of three and larger, SpeckSense’s detection rate exceeds 90%.

rates over a window representing a sequence of runs. An interference class is
detected when it is observed at least once over the window. The plots show the
detection rate of SpeckSense for different window sizes. SpeckSense achieves a
detection rate of over 90% in all cases when using a window size of 3 or greater.
Depending upon the specific interference context described in the experimen-
tal setup, non-periodic and periodic traffic relate to different sources of channel
activity. For example, periodic traffic in Figures 5(a), 5(b), and 5(c) represents
periodic TCP bursts in WiFi data transfers. In contrast, periodic traffic in Fig-
ures 5(d), 5(e), and 5(f) also comprises additional 802.15.4 traffic, which has a
period of 125 ms. Non-periodic traffic at location A relates to WiFi data trans-
fers, and at locations B and C, relates to a combination of WiFi and Bluetooth
data traffic.

Channel activity in the office corridor also includes beacons from additional
WiFi APs outside of our control, such as the university’s WiFi. Table 1 shows
the 50th and 90th percentile of WiFi access points that SpeckSense identifies
at different locations. In general, SpeckSense identifies fewer access points in
the presence of 802.15.4 traffic. We attribute this to an artifact of our experi-
mental setup – the periodic 802.15.4 acknowledgement frames from the 802.15.4
receiver have burst durations similar to WiFi beacons. SpeckSense therefore de-
tects a cluster that has multiple, yet distinct periods, which our approach (see
algorithm 1) does not handle at present. We plan to address this issue in future
work. Nonetheless, the results show that SpeckSense identifies multiple access
points, even in the presence of Bluetooth and 802.15.4 traffic.

5.2 Improving Data Collection Performance

Data collection applications for indoor WSN deployments suffer from degraded
performance on account of WiFi interference. To mitigate the effects of exter-



Number of detected WiFi
access points (percentile)

802.15.4 Location A Location B Location C

traffic 50th 90th 50th 90th 50th 90th

No 3 4 1.5 4 1 3

Yes 1 3 2 4 1 2

Table 1. SpeckSense can detect multiple WiFi access points deployed over different
locations on the office corridor. The values (50th and 90th percentile) indicate that
SpeckSense can detect WiFi activity even in the presence of ambient 802.15.4 traffic.

nal interference, multichannel protocols [2] coordinate node communication on
different radio channels. These approaches achieve resilience against interference
by either hopping through a fixed sequence of channels [15, 16], or by switch-
ing channels when interfered [2]. However, they do not address the problem of
finding a relatively interference-free channel.

As a solution, we run SpeckSense independently on every node to perform
a deployment-time assessment of WiFi-free radio channels. We evaluate Speck-
Sense as a link-layer service for Chrysso [2], a multichannel protocol that adap-
tively switches radio channels on interfered nodes. Sensor nodes independently
run SpeckSense at network bootstrap and blacklist channels in which SpeckSense
detects WiFi beacons or interfering channel activity with an average inter-burst
separation less than 100 ms.

We compare SpeckSense’s results against three other strategies that differ
on channel selection policy, namely Chrysso default, Chrysso best channels, and
Chrysso threshold. Chrysso default employs a random channel selection scheme
over all 16 channels, whereas Chrysso best channels performs a random selection
over a restricted set of channels, namely 15, 20, 25 and 26. The channels are
chosen such that they empirically exhibit the best packet reception rates among
all other channels on the testbed [16], and do not overlap with commonly used
WiFi channels 1, 6 and 11. Chrysso threshold is closest in design and objective to
SpeckSense on interference avoidance, and ranks channels based on their quality.
The channel quality is computed as a ratio of the number of channel idle RSSI
samples (RSSI ≤ -90 dBm) over the total number of RSSI samples, as suggested
by Musăloiu-E. et al. [17]. In our implementation, Chrysso threshold uses the
best four channels in decreasing order of channel quality.

We experimentally evaluate the aforestated strategies on the Indriya WSN
testbed [18], using a network of 85 nodes including the sink. Every node generates
one packet per minute over a two-hour duration, and duty cycles its radio wakeup
over an interval of 125 ms, using the X-MAC protocol [19]. We perform six
experimental runs for each variant of Chrysso described above.

Table 2 contrasts data collection performance of the revised Chrysso vari-
ants against its original implementation, Chrysso default. In general, avoiding
interfered channels improves both the average data yield and the energy per
transmitted packet for Chrysso. Specifically, running SpeckSense with Chrysso
increases the average data yield (packets received by the sink) by approximately



Data collection performance

Protocol Data Duty Energy per
yield cycle delivered packet

Chrysso default 73.3 % 2.9 % 4.22 mJ

Chrysso best channels 95.3 % 2.3 % 2.6 mJ

Chrysso + threshold 91.4 % 2.4 % 3.1 mJ

Chrysso + SpeckSense 94.8 % 2.3 % 2.9 mJ

Table 2. Data collection performance (averaged over six runs) on a 85-node testbed,
highlighting the advantages derived from interference avoidance. SpeckSense with
Chrysso performs best compared to other alternatives on avoiding interfered channels.

30% over Chrysso default. This improvement is mainly attributed to avoidance
of WiFi-interfered channels by SpeckSense. To validate our claim, we find that
SpeckSense blacklists 802.15.4 radio channels that overlap with commonly used
WiFi channels 1, 6 and 11, in more than 80% of the nodes. For the same reason,
Chrysso SpeckSense performs comparably with Chrysso best channels that ex-
plicitly avoids the aforesaid WiFi channels. The 95% confidence intervals for both
Chrysso SpeckSense and Chrysso best channels overlap on all three performance
metrics. The overlap indicates that neither variant outperforms the other, in
accordance with rules of analysis in [20]. However, SpeckSense presents a more
general solution that applies to indoor environments wherein co-located WiFi
networks may operate on channels other than 1, 6 and 11. Lastly, SpeckSense
outperforms rssi threshold on average data yield and duty cycle. This suggests
that for the same energy cost in RSSI sampling (334.6 mJ on average per node),
SpeckSense is more effective at avoiding WiFi-interfered channels than a simple
approach that computes channel utilization using a threshold. In conclusion, the
results show that an existing multichannel protocol such as Chrysso benefits
from the interference classification output provided by SpeckSense.

6 Related Work

As the number of wireless devices operating in the license-free frequency bands
is steadily increasing, the problem of interference is receiving more attention. A
few other approaches are similar to ours in that they sample the RSSI. Zacharias
et al. [8] classify interference based on a fixed set of simple conditions. In contrast
to SpeckSense, their classification includes processing of computationally expen-
sive tasks such as FFTs and execution on a PC rather than on motes. Also Boers
et al. [21] sample the spectrum for interferer classification but they only target
interference occurring at regular intervals. Likewise, Zhou et al. [9, 13] propose
an algorithm that is restricted to detecting WiFi beacons from RSSI traces. An-
other approach based on spectrum sampling is by Bloessl et al. [22]. In contrast
to SpeckSense, their approach is limited to the detection of single interference
sources. Ansari et al. [23] propose an approach to detect WiFi networks by using
a synchronized pair of nodes to scan adjacent channels. In contrast, SpeckSense
bases its observations of multiple interferers on a single node. Rayanchu et al. [24]
detect WiFi access points and other non-WiFi devices using commodity WiFi



hardware. However, their approach relies on device-specific WiFi features and
involves computationally intensive processing, making it infeasible for resource-
constrained sensor nodes. Hermans et al. [6] present SoNIC interference clas-
sification without spectrum sampling relying only on the information provided
by corrupted packets. As their approach does not rely on spectrum sampling it
is less energy-consuming than SpeckSense but it does not provide higher level
information such as the number of WiFi access points. There are efforts for
channel selection that use the average energy in a channel [17,25,26], or packet
reception counts [27] as selection criteria. In contrast to these approaches, we
take the source of interference into account.

7 Conclusion
In this paper we have presented SpeckSense, a detection and classification scheme
for concurrent multi-source interference affecting wireless sensor networks. Ex-
periments in a real setting have shown that SpeckSense detects multiple inter-
ferers in over 90% of the cases. We have also evaluated SpeckSense as a low-layer
service to recommend interference-free channels for WSN data collection. Exper-
iments combining the results of SpeckSense with a multichannel protocol have
shown a significant improvement in data yield at lower duty cycle.
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