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Abstract

Radial basis function (RBF) based approximation methods for numerical solution of
partial differential equations are interesting due to their potentially spectral accuracy
and due to being meshfree. This could be especially beneficial for high dimensional
problems, where meshing is non-trivial. In this work, we present different RBF ap-
proaches and evaluate them on a multi-asset option pricing problem. The conclusion is
that the properties of the problem need to be taken into account in the solution method
in order to have an approach that is viable for higher dimensions. Furthermore, we
suggest to use an RBF based partition of unity approach in order to introduce locality
and reduce the computational cost.
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1 Introduction

Radial basis function (RBF) based methods [4] have become quite popular for pricing of
financial derivatives based on partial differential equation (PDE), or in the case of jump
diffusion partial-integro differential equation (PIDE) formulations of the pricing problem.
One of the main arguments is that RBF methods are easy to use in high-dimensions, i.e.,
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for several underlying assets. The methods work only with scattered node points and do
not require meshing. Furthermore, the basic mathematical formulation is the same in any
number of dimensions. In an RBF method, the RBF approximation s(x, t) to the value
u(x, t) of the financial derivative is typically of the form

s(x, t) =
N
∑

j=1

λj(t)φ(ε‖x− xj‖) ≡
N
∑

j=1

λj(t)φj(x), (1)

where φ(r) is a (conditionally) positive definite RBF, ε is the shape parameter, which
makes the RBF more flat as it goes to zero and more peaked as it goes to infinity, and xj
are scattered node points that act as the center points for the RBFs. The coefficients λj

can be determined through collocation with equations and boundary conditions.
As can be seen from (1), the RBF approximation yields a continuous representation of

the solution function. This allows explicit evaluation of derivatives of the approximation,
which is an advantage in finance where the partial derivatives ∂u

∂x and ∂2u
∂x2 , denoted by ∆

and Γ, are needed for hedging purposes.
In the following sections, we will describe some different approaches, comment on their

strengths and weaknesses, provide some relevant citations, and show numerical experiments
to demonstrate the performance. Finally, we will reach to what we think is currently the
most promising approach, radial basis function partition of unity methods, and present
some preliminary results for these.

2 The model problems used for demonstrations

We will use the simplest possible option pricing problem to test the numerical approaches.
We consider this to be a European basket call option, priced using the multi-dimensional
Black-Scholes equation. Any added features like jump diffusion, stochastic volatility and
exoticity may need special treatment by the numerical methods, but this is not an issue
that we are pursuing in this paper.

The d-dimensional Black-Scholes equation for an option on d underlying assets is de-
fined on R

d
+. For computational purposes, we define a computational domain Ω ⊂ R

d
+.

Furthermore, we define Γ ⊂ ∂Ω as the part of the boundary of the computational domain
where we impose boundary conditions. After transformation of the time-variable [17] and
scaling of the spatial variables as in [13], we can write the Black-Sholes equation as the
following initial-boundary value problem

∂u

∂t
(x, t) = Lu(x, t), x ∈ Ω, t > 0, (2)

u(x, t) = g(x, t), x ∈ Γ, t > 0, (3)

u(x, 0) = Φ(x), x ∈ Ω, (4)
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where u(x, t) is the value of the option, x ∈ R
d
+ contains the scaled values of the d assets,

and t is the time left to the exercise time T of the option. The spatial operator has the
form

Lu(x, t) = r

d
∑

i=1

xi
∂u

∂xi
+

1

2

d
∑

i,j=1

[

σσT
]

ij
xixj

∂2u

∂xi∂xj
− ru,

where r is the risk free interest rate and σ is the volatility matrix. For our numerical
examples, we use the contract function

Φ(x) = max(0,
1

d

d
∑

i=1

xi −K), (5)

where, in our present case, the exercise price K is always equal to 1 due to scaling. The
boundary conditions are linked to the contract function [19]. At the near-field boundary,
consisting of the origin x = 0, we use

g(x, t) = 0, (6)

and at the far-field boundary, here defined as the part of the boundary where 1
d

∑d
i=1 xi ≥

4K, we impose

g(x, t) =
1

d

d
∑

i=1

xi −K exp(−rt). (7)

3 Discretization in time and approximation in space

Let the time interval [0, T ] be divided into M steps of length kn = tn − tn−1, n = 1, . . . ,M ,
and let the approximate solution at the discrete times tn be denoted by

vn(x) ≈ u(x, tn).

In the majority of the numerical experiments we discretize the PDE problem (2–4) in time
using the unconditionally stable, second-order accurate, implicit BDF-2 method [11, p. 401],
resulting in

v1(x)− k1Lv1(x) = v0(x), x ∈ Ω, (8)

vn(x)− βn
0Lvn(x) = βn

1 v
n−1(x)− βn

2 v
n−2(x), x ∈ Ω, n = 2, . . . ,M, (9)

vn(x) = g(x, tn), x ∈ Γ, n = 1, . . . ,M, (10)

v0(x) = Φ(x). x ∈ Ω, (11)
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The details of how we choose the coefficients βi are described in [13]. For the approximation
in space, we use (1) in its time discrete form, evaluated at the node points to get

vn(xi) =
n
∑

j=1

λn
j φj(xi), i = 1, . . . , N, (12)

corresponding to the linear system
vn = Aλn, (13)

where vn = (vn(x1), . . . , v
n(xN ))T , Aij = φj(xi), and λn = (λn(x1), . . . , λ

n(xN ))T . In a
similar fashion, we get

Lvn = Bλn, (14)

where Bij = Lφj(xi). Combining the two, we get

Lvn = BA−1vn, (15)

allowing us to work with nodal values as unknowns. Note that we can easily exchange the
set of evaluation points {xi}Ni=1 in the matrix B for some other set of points x ∈ Ω to
compute solution values or derivatives at arbitrary locations.

4 Numerical results for different RBF approaches

We use two different radial basis functions for the numerical experiments. The multiquadric
RBF, which is conditionally positive definite, but nevertheless guarantees a non-singular
interpolation matrix for distinct nodes and ε > 0,

φ(r) =
√

1 + ε2r2,

and the Gaussian RBF, which is positive definite,

φ(r) = exp(−ε2r2).

The scaled exercise price K = 1, and the exercise time used is T = 1 year. In the volatility
matrix, we set σii = 0.3 and σij = 0.05, i 6= j. The risk free interest rate is set to r = 0.05.
As computational domain we use Ω = R

d
+ \ {x | 1d

∑

xi > 4K}, which results in the interval
[0 4] in 1-D, a triangle with corners in(0, 0), (0, 8), and (8, 0) in 2-D, and higher order
simplexes in more dimensions. This is possible because the RBF method is meshfree, and it
leads significant savings in the computational cost compared with solving over a hypercube.
This approach was used in [19] and [13]. In [13], we also showed that there is no loss of
accuracy from this truncation of the domain.

Figure 1 shows examples of node layouts used in the numerical experiments in the 2-D
case. The uniform and Chebyshev nodes can be generated for any number of dimensions
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and are based on barycentric coordinates within the simplex [14]. In the Chebyshev case,
the nodes are clustered in a Chebyshev fashion towards each boundary. The adapted nodes
are more dense in the region of interest, and take the strike location into account.
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Figure 1: Examples of the uniform nodes, Chebyshev nodes, and adapted nodes that are
used in our 2-D experiments.

In the following, the one-dimensional problem will be used as a starting point for quan-
titative investigation of different methods (due to the reasonable computational cost), the
two-dimensional problem will be used for testing if the 1-D results carry over, and the
potential for solving higher dimensional problems is discussed.

As asset prices are typically given with four or five digits of accuracy, we consider
τ = 1·10−4 to be a reasonable target accuracy for the solution of the option pricing problem.
Of course, the desired accuracy significantly influences how large or how high-dimensional
problems we can solve, so with a lower accuracy the projections become brighter. In the
following subsections, we discuss different approaches in detail.

4.1 Global collocation using uniform node layouts

The most straightforward approach of an RBF method to option pricing is to use (1) directly
on a set of uniformly distributed nodes. This was done for European and American options
in one dimension by Hon et al. in [12, 23], and for one and two dimensions by Fasshauer
et al. [6] and Marcozzi et al. [16]. RBF methods have also been applied to other types of
options and contracts such as a digital option [5], a currency option [2], and a credit default
swap [10], as well as to problems with jump diffusion [1, 9, 22]. In all cases, the methods
work well.

Figure 2 shows the results for different values of N as a function of ε. It should be
noted that due to ill-conditioning that grows with increasing N and decreasing ε, the errors
blow up and are not shown for the lower left corner of the figure. The target accuracy is
reached the first time for N = 46 node points. The solutions are shown to the right and
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the errors are about equally large at the boundaries and at the region of interest near the
exercise price K = 1. It should also be noted that the results are sensitive to the placement
of nodes near the strike discontinuity (see also [19]). Therefore, the number of node points
have been chosen in the most favourable way.
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Figure 2: Left: The maximum error in the solution to the one-dimensional European option
pricing problem as a function of ε for different values of N . From top to bottom, N = 4j+2,
j = 2, . . . , 24. The dotted line shows the target error. Right: The solution error as a function
of the scaled asset price for different values of ε ∈ (1.25, 2.25) for N = 46.

Now, consider the same problem in two dimensions. We can try to estimate how many
points we are likely to need to achieve the same accuracy. It is reasonable to assume that
we want the same node distance along the diagonal x1 = x2 in the two-dimensional case as
we had along the interval in the one-dimensional case. This line is

√
2 times longer than the

interval, leading to
√
2N1D nodes. We can use this as a measure of the number of points per

dimension in the 2-D case. We can apply similar arguments in higher dimensions, leading
to the special and general cases

N2D ∝ (
√
2N1D)

2

2
= N2

1D, NdD ∝ (
√
dN1D)

d

d!
, (16)

where the factorial in the denominator is due to the ratio of the simplex to the hypercube.
With 46 points in one dimension, this indicates that we need around 2100 points in two
dimensions. The best solution we could come up with, without an extensive search of the
parameter space, was for ε = 1.5 and N = 2939 with a maximum error E = 5.2 · 10−3. The
error, displayed in Figure 5, is largest in the strike region. In the three-dimensional case,
formula (16) indicates over 28 000 nodes. Since we need to solve a dense linear system of
this size, this becomes very expensive, both in terms of computational cost and memory
requirements. In four dimensions, we judge it to be unfeasible in practice.
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4.2 Global collocation using adapted node layouts

As discussed in the previous subsection, the problem is sensitive to the placement of nodes
near the strike region. Furthermore, the errors are large in this region, which is where we
want to know the solution. Typically, options are traded with exercise prices in the vicinity
of the current asset value.

By employing an adapted node layout, we aim to reduce the error in the region of
interest, while possibly sacrificing accuracy in other parts of the domain. Therefore, we
introduce a different error measure, the financial error [19], defined by

Ef = max
x∈ΩK

|s(x, T )− u(x, T )|,

where ΩK = {x |K − 2
3K ≤ 1

d

∑d
i=1 xi ≤ K + 2

3K}. We use the type of adapted node
layout shown in Figure 1 and perform the same experiment as for the uniform nodes, but
using the financial error measure. The results are shown in Figure 3. We can see that the
errors in the strike region are much smaller than in the rest of the domain, and we reach
the target accuracy already at N = 17 points. If we again use formula (16) we now need
around 300 points in 2-D, 4000 points in 3-D, and 56 000 points in 4-D. This means that
3-D is definitely accessible, while 4-D might be stretching it a bit, but could be done with
a lower target accuracy.
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Figure 3: Left: The financial error for the adapted nodes as a function of ε for different
values of N . From top to bottom, N = 3j + 2, j = 3, . . . , 33. The dotted line shows the
target error. Right: The solution error as a function of the scaled asset price for different
values of ε ∈ (1.03, 1.41) for N = 17.

Actual experiments in 2-D show that we can reach the target accuracy. However,
because of the special node layout, we cannot hit the target exactly. At N = 599 points,
we get a financial error Ef = 5.1 · 10−5. The result is shown in Figure 5.
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The approach with adapted nodes is compared with the adaptive finite difference
method from [18] in [19]. With our target tolerance, the adapted node RBF method is
about 40 times faster in 1-D and 30 times faster in 2-D.

In [20], it is shown why using exponentially converging methods on uniform nodes must
lead to exponential ill-conditioning. This issue can be overcome by clustering the nodes
toward the boundaries, which was done successfully in [7]. However, for the option pricing
problems, it results in reducing the errors at the boundaries while increasing them in the
strike region, and is hence not an effective approach. Another example of an approach
with node adaption that seems to work well is given in [1], where the adaptive residual
subsampling method of [3] is used. There, the shape parameter is scaled individually for
each RBF, proportionally to the inverse of the local node distance. This was suggested
in [8], based on a heuristic exploration of optimal node locations and shape parameter
values for some test problems. Here, we have employed this strategy for scaling the shape
parameter in the adapted node approach. The results are shown in Figure 4. The error
does become smaller outside of the strike region and the general behaviour of the error is
somewhat improved, but there are no dramatic changes.
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Figure 4: Results for adapted nodes and individually scaled shape parameters.

4.3 Least squares and multi-level approximations

Using a least squares approach, i.e., using more evaluation points than node points, leads
to a better approximation of the non-smooth initial condition in terms of capturing the
low frequencies compared with using pure collocation. By using uniform nodes and a least
squares approximation we reach the target accuracy with N = 26 nodes. Solving the least
squares problem is more expensive than solving the collocation system, but in [14], we show
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that a least squares method is more effective than collocation in terms of the total work for
a given accuracy.

An issue regarding the solutions to the option pricing problems that we have not men-
tioned so far is the transition from non-smooth to smooth. The non-smooth initial condition
is best approximated using a large shape parameter, but the smooth solution at the final
time fares better with a small shape parameter. The solution we propose in [14] is to use
a multilevel approach with different shape parameters at different levels. This results in a
method that is quite robust with respect to the choice of method parameters, that has a
quite uniform error distribution and has a comparatively small error over the whole time
interval.

Figure 5 shows how the least squares multilevel method compares with the other ap-
proaches. The number of nodes at the fine level (which determines the computational cost)
is comparable to the adapted case, so the potential for solving higher dimensional problems
is the same. However, the new method is more robust and the overall error behaviour is
better. Therefore, we consider this to be the most promising approach so far.

5 The RBF partition of unity method

The main obstacle to using the different versions of global RBF methods is computational
cost. An attractive compromise between high order and locality is offered by RBF based
partition of unity (RBF-PU) methods. We have developed a method of this type in the
manuscript [15]. This first paper deals with time-independent PDEs, and we are able to
show theoretical results of the types below for the RBF-PU approximant.

‖s(x)− u(x)‖W 2
∞
(Ω) ≤ Cmax

j
Cjρ

m− d
2
−α

j ‖u‖N (Ωj), (17)

‖s(x)− u(x)‖W 2
∞
(Ω) ≤ Ceγ log(h)/

√
hmax

j
‖u‖N (Ωj), (18)

where Ωj are the partitions that cover Ω, ρj is the radius of the partition Ωj , h is the local
node distance, and α is the degree of the PDE operator. An example of adapted partitions
and nodes is shown in Figure 5. The meaning of the two estimates is the following

(i) If we fix the number of nodes/partition, we get algebraic convergence in ρ.

(ii) If we fix the partitions, we get spectral convergence in the local node distance.

A numerical demonstration of the theoretical results is given in Figure 6. Note that the
target accuracy can be reached without using RBF-QR [7]. This is relevant for higher
dimensions since RBF-QR is currently only available in up to three dimensions. The system
matrix of the RBF-PU method is sparse, which allows us to solve very large systems of
equations. We are currently working on a parallel iterative solver for these systems.
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Figure 5: Top left: Collocation on N = 2939 uniform nodes for ε = 1.5. The dashed line
indicates the location of the strike discontinuity. Top right: Collocation with N = 599
adapted nodes. Bottom left: The least squares multilevel method with Nf = 592 nodes
at the fine level and Nc = 96 at the coarse level for εf = 2 and εc = 0.1. Bottom right:
Partitions and nodes for the RBF-PU method.

In [21] the RBF-PU method is applied to a convection-diffusion problem and an Amer-
ican option pricing problem with promising results. The node and partition layout used for
the American option pricing problem is shown in Figure 5.
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