
Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4 TSCH Networks

Atis Elsts, Xenofon Fafoutis, James Pope, George Oikonomou, Robert Piechocki and Ian Craddock
Department of Electrical and Electronic Engineering,

University of Bristol, UK

Abstract—The upcoming Internet of Things (IoT) appli-
cations include real-time human activity monitoring with
wearable sensors. Compared to the traditional environmental
sensing with low-power wireless nodes, these new applications
generate a constant stream of a much higher rate data.
Nevertheless, the wearable devices remain battery powered
and therefore restricted to low-power wireless standards such
as IEEE 802.15.4 or Bluetooth Low Energy (BLE). Our work
tackles the problem of building a reliable autonomous schedule
for forwarding this kind of dynamic data in IEEE 802.15.4
TSCH networks. Due to the a priori unpredictability of these
data source locations, the quality of the wireless links, and
the routing topology of the forwarding network, it is wasteful
to reserve the number of slots required for the worst-case
scenario; under conditions of high expected datarate, it is
downright impossible. The solution we propose is a hybrid
approach where dedicated TSCH cells and shared TSCH slots
coexist in the same schedule. We show that under realistic
assumptions of wireless link diversity, adding shared slots to a
TSCH schedule increases the overall packet delivery rate and
the fairness of the system.

Keywords-Time slotted channel hopping, scheduling, Internet
of Things.

I. INTRODUCTION

The recently published IEEE 802.15.4-2015 standard [1]
introduces several new MAC (Medium Access Control)
modes of operation. Among others, it standardizes the Time-
Slotted Channel Hopping (TSCH) protocol, a TDMA (Time
Division Multiple Access) MAC layer. TSCH has attracted
significant attention from the research community because it
promises more reliable and predictable wireless networking
for the Internet of Things (IoT). Because of channel hopping
at the MAC layer, TSCH is able to withstand narrow-band
interference and multipath fading. Additionally, its time-
slotted nature means that the protocol is comparatively easier
to predict, in terms of energy consumption and delay, as
long as an appropriate communication schedule is provided.
However, constructing efficient schedules for applications
using TSCH networks is still an open research problem.

In this paper we focus on increasing the reliability of data
collection in TSCH networks characterized by high datarate
and unpredictable traffic. By high datarate we mean con-
ditions where the network sink’s packet reception capacity
is close to being maximally utilized. By unpredictable
we mean the combination of several aspects: (1) hard-to-
predict data rates and locations of mobile data sources; (2)
hard-to-predict wireless link dynamics; (3) hard-to-predict

routing path changes. The timescale of these changes, in
particular (1) and (2), is on the order of seconds or even
milliseconds; this does not play well with reactively adaptive
scheduling mechanisms, as rapid-enough adaptations be-
come impractical or downright impossible. Instead, proactive
overallocation of scheduled TSCH timeslots is necessary.
However, such an overallocation significantly reduces the
total schedule capacity, and in normal operating conditions
it causes many reserved slots to be left unused.

The main contribution of this work is a method to increase
the number of successful packet transmissions within a
TSCH slotframe, and therefore the network’s total through-
put. We achieve that by sharing some of the transmission
slots between different nodes. Essentially, this is hybrid
scheme where slotted-Aloha (contention-based slots) and
dedicated unicast timeslots (contention-free slots) coexist in
the same TSCH slotframe. We show that the throughput is
increased if either: (a) there are significant differences in
the quality of links between multiple upstream nodes and
the same upstream node. Numerous real-world studies [2]
[3] [4] confirm that this is fair assumption in low-power
wireless networks; links spatially separated by less than
a meter often show completely different performance. Or,
(b) the nodes have unequal requirements in terms of how
many messages they need to transmit. This in particular
characterizes multihop topologies, where nodes with more
children need to forward more data towards the root.

For an illustrative example, consider the Fig. 1. Here, three
out of four nodes have good link-layer Packet Reception
Rate (PRR), PRR = 0.8, while the node A has an average
quality (PRR = 0.4) link to the gateway. To deliver 100 %
of packets, A has to retransmit each packet 2.5 times on the
average. In a scenario where each of the nodes generates 10
packets per second, approximately 12.5 slots per second are
sufficient for B, C, and D; this number is slightly higher
than 10×ETX = 12.5 because of finite queue sizes. On the
other hand, A requires at least 25 dedicated slots. Since there
are only 100 TSCH slots per second, a static TSCH schedule
that is symmetrical (i.e., makes no a priori assumptions about
which links may be bad) would exhaust all its capacity
just for one-directional communication. Our solution is to
reserve some slots for common usage. For example, if 16
slots are reserved for each node and 16 slots are shared
between them, A has access to the total of 32 slots, which
is both sufficient to deliver all its data and leaves 20 slots per

C

A B

D

GWETX=2.5

ETX=1.25 ETX=1.25

ETX=1.25

Figure 1: An example TSCH forwarding network topology.
Links from B, C and D all have good quality (PRR = 0.8), link
from A has average (PRR = 0.4), therefore A has to use more
retransmissions to deliver an equal number of packets.

second usable for other traffic (e.g., broadcast and gateway-
to-node traffic). We rely on an autonomous scheduling
approach that requires no run-time communication between
the nodes besides the standard TSCH control messages
and RPL routing messages. The schedule is first statically
constructed at compile-time; subsequently, at the run-time,
nodes autonomously decide which and how many TSCH
links to use, depending on their routing state. Using a queue-
size dependent contention algorithm for the shared slots, the
nodes with lower link quality or with more data to send are
able to make more transmissions within each slotframe.

The number of children nodes of a node affects its cumu-
lative data rate. Our secondary contribution is a mechanism
that allows nodes to autonomously reappropriate dedicated
slots belonging to other nodes, as long as collision-free
operation is guaranteed. The nodes do this by using their
RPL routing state; in particular, slots belonging to indirect
children nodes can be safely reused when transmitting data
upstream. Our results shows that this approach leads to better
results than simple slot sharing in multihop topologies.

This work is motivated by a real-world use case (Section
III). At the same time, we believe that the assumptions in
this work are typical enough for many other applications.

We start with discussing some background information
and related work (Section II) and the motivating use case
(Section III). Subsequently we present analytic modeling
results (Section IV) as a motivation for the the shared slot
approach. The design of the system is described in Sec-
tion V. To assess the performance of the system (Section VI),
we first evaluate the slot-sharing approach numerically, then
implement the scheduling algorithm in the Contiki OS and
evaluate the implementation using simulations in Cooja,
the Contiki simulator. The outcome shows a good match
between the numerical and full-scale results, and reduction
in packet loss rate up to 3.5–4 times when the shared slot
approach is used.

II. BACKGROUND AND RELATED WORK

Time in TSCH networks is globally synchronized and is
divided in timeslots. Typically, each timeslot is 10 ms long,
and supports the transmission / reception of a single packet
along with its acknowledgment. Timeslots are grouped in

slotframes. A TSCH schedule consists of one or more
periodically repeating slotframes.

The TSCH specification [1] supports both contention-
based (shared) slots and contention-free (dedicated) slots. A
schedule with only shared slots provides slotted-Aloha be-
havior with maximal flexibility, as no assumptions about the
network’s topology and packet generation rates are needed.
In contrast, a schedule of dedicated slots is more reliable,
but cannot be effectively constructed without predicting the
traffic flows and link qualities in the network.

The 6tisch IETF working group [5] is an ongoing effort to
tackle the challenges of running IPv6 traffic on top of low-
power TSCH networks. One of the outcomes is a minimal
schedule proposal for TSCH networks [6]. This minimal
schedule consists of just one active shared slot per slotframe.
Their main goals are interoperability and basic functionality
in the absence of more complicated schedules, as well as
support for event-driven (unpredictable) traffic patterns; the
6tisch minimal schedule does not make any assumptions
about the network topology or the traffic patterns.

Orchestra [7] is an autonomous scheduling mechanism
where each node independently decides its schedule based
on its RPL routing state. Time slots in Orchestra can be
either shared (e.g., between the children of a node) or dedi-
cated. Orchestra compared to the 6tisch minimal schedule
reduces the number of packet collisions and leads to an
order-of-magnitude in the number of undelivered end-to-
end packets [7]. The main difference from our work is that
Orchestra is not targeted towards high-datarate networks. In
Orchestra, each slotframe only has up to one active slot for
each pair of nodes, and the authors do not tackle the problem
of congestion points appearing in multihop networks.

Juc et al. [8] compare two of the new MAC schemes intro-
duced in IEEE 802.15.4 standard: DSME (Deterministic and
Synchronous Multichannel Extension) and TSCH. DSME
is an extension on top of beacon-enabled IEEE 802.15.4
networks where guaranteed timeslots are present. DSME
supports both contention-free and a contented slots inside
each slotframe. Juc et al. conclude that DSME shows higher
throughput for high-duty cycle applications. However, this
conclusion holds only in case short packets are used. If
Tx-ing, processing, and acknowledging a packet takes up
the whole duration of a TSCH slot (10 ms), the network is
already operating at its theoretical capacity. Our experiences
[9] with porting TSCH to CC2650 verify this observation.
Older platforms such as TelosB and Zolertia Z1 are forced
to use even longer TSCH timeslots (15 ms).

A plethora of research work discusses designing cen-
tralized [10] [11] or distributed [12] schedules for TSCH.
However, there is lack of implementation-tested publicly
available work, not the least because of run-time complexity
of implementing these schemes.

Hashimoto et al. [13] in particular investigate sharing
TSCH slots. They conclude that sharing slots leads to

shorter slotframe sizes, therefore to reduction of delay and
improvements of throughput. However, in their work the
slots are shared between flows going through the same node,
not shared between nodes.

III. THE SPHERE USE CASE

SPHERE (Sensor Platform for HEalthcare in Residential
Environment) is an interdisciplinary research collaboration
with the objective to develop a multipurpose, multi-modal
sensor platform for monitoring people’s health inside their
homes [14]. Untypically for academic projects, in 2017 the
SPHERE platform is going to be deployed in real people’s
homes (100-home study), therefore it has to satisfy many
real-world requirements.

The SPHERE project is using three sensing modalities
to capture health-related data [14]: (1) a low-power envi-
ronmental sensor network, including light, humidity, tem-
perature, presence, and noise sensors (E devices in Fig. 2);
(2) a network of low-power wearable devices equipped with
accelerometer sensors, one per home resident (W devices
in Fig. 2); (3) a video sensor network for recognition of
activities through video analysis.

The data from wearable and environmental sensors is
collected using a backbone network consisting of a number
of mains-powered forwarding nodes deployed through the
house (G devices in Fig. 2). These nodes have dual radios,
running both Bluetooth Low Energy (BLE) and 6LoWPAN
over IEEE 802.15.4 TSCH stacks at the same time.

The wearable devices continuously measure 3-axis accel-
eration with 25 Hz frequency [15]. At least 20 Hz frequency
acceleration measurements are required to be collected on
the server for accurate activity detection of the human
participants [16], which is one of the project’s main goals.
The measurements are continuously broadcast using BLE
advertising mode. We use broadcast in order to (1) make
use of spatial diversity of the forwarding nodes for more
reliable data collection and (2) implement RSSI-based room-
level localization of the human participants.

The wearable advertisements are picked up and forwarded
by the TSCH network node towards the network’s sink. A
single TSCH packet contains 12 readings of the three-axis
accelerometer together with the overhead of metadata and
packet headers. This leads to packet generation rate of 2.1
TSCH packets per second per single wearable device. How-
ever, multiple forwarding nodes are expected to pick up each
wearable advertisement on the average. The location of the
wearable devices is highly unpredictable, as it depends on
both human movement and wireless link quality within the
house. Therefore the data rate on the individual forwarding
nodes cannot be predicted before deploying the network;
furthermore, the rate is expected to be highly dynamic,
therefore designing on-the-fly schedule allocation techniques
for forwarding the wearable data is nontrivial to say the least.

GG

GG

E

E

E E

E

W

W

W

Figure 2: An example of the SPHERE platform for residential
monitoring. The mains-powered forwarding nodes (G) form a
backbone TSCH network and collect data from the battery-powered
environmental sensor nodes (E). In addition, they are equipped
with an additional BLE radio for collecting the data broadcast by
the mobile wearable sensors (W).

The system is required to support up to 4 wearable
devices. Assuming the worst-case scenario of all forwarding
nodes picking up all wearable advertisements, each for-
warding node is going to generate 8.3 packets per second.
To make matters worse, TSCH timeslot allocation should
account for link-layer retransmissions. The level of this over-
allocation depends on the quality of the channel, which in an
indoor environment is notoriously dynamic, due to multipath
propagation, channel fading and body shadowing. Assuming
that PRR = 0.5 is the worst level of link quality the system
needs to survive, 16.6 TSCH slots per second are required
for data forwarding from each forwarding node. Since there
are only 100 TSCH slots per second, that leaves us with very
limited maximal number of forwarding nodes even assuming
a single hop network: only up to b100/16.6c = 6 nodes.
A multihop network makes things worse, as a node with
n children is expected to generate n + 1 times more data
in the worst case compared to a node with no children.
On the other hand, the average long-term link quality of
a properly deployed indoor wireless network is expected to
be closer to PRR = 1.0 than to PRR = 0.5, especially
as our system uses adaptive techniques to avoid heavily
interfered IEEE 802.15.4 channels [17]. If the overallocated
slots could be reduced, up to two times fewer total slots
would be required for each forwarding node. The practical
objective of the work behind this paper is to exploit this fact
in order to support a higher number of forwarding nodes
without sacrificing reliability.

IV. SYSTEM MODEL

In high rate scenarios with multiple end nodes, a slotted-
Aloha TSCH schedule is expected to perform very poorly,
primarily due to the very high collision probability. On
the other hand, a sufficient number of dedicated slots for
packet retransmissions severely restrict the maximal number
of nodes supported in a star (sub)network.

Consider a single-hop TSCH network with two end nodes,
A and B, and a single sink node. The end nodes have a
datarate of rA and rB respectively, expressed in packets per
slotframe. For simplicity, let us disregard channel hopping,
and assume that the link from the end nodes to the sink is
characterized by a link-layer PRR, pA and pB respectively.
We model retransmissions as a sequence of independent
Bernoulli trials with the same probability of failure (i.e.
PER) for each trial. Furthermore, we assume infinite queues.
The total expected number of transmissions for node A, RA,
can therefore be calculated as

RA = rA

∞∑
n=1

npA(1− pA)
n−1 =

rA
pA

. (1)

The total expected number of transmissions for node B, RB

is calculated similarly. RA and RB are also expressed in
packets per slotframe. NF defines the number of slots in
a slotframe. NS ≤ NF defines the number of shared slots
within a slotframe. In addition, each end node has ND =
1
2 (NF −NS) dedicated contention-free slots.

In each slotframe, each end node first uses its dedicated
slots for up to ND packets. It then attempts to forward the
remaining traffic, if any, via the shared slots. We denote
the excess traffic as CA = RA − ND and CB = RB −
ND respectively. If there are no shared slots (NS = 0), the
excess traffic is lost. Otherwise, it is transmitted through the
shared slots, with a probability of collision. We assume that
each shared slot is selected with a probability CA

NS
and CB

NS

respectively, and we model the total number of collisions
(K) in a slotframe as the cumulative probability of A and
B selecting the same slot:

K = NS
CA

NS

CB

NS
=

CACB

NS
. (2)

The end-to-end packet delivery rate (PDR) of node A,
denoted as PDRA, can be then estimated as follows:

PDRA =

1− CA

RA
NS = 0

1− K
RA

NS > 0 and CA ≤ NS

1− K+CA−NS

RA
NS > 0 and CA > NS .

(3)

The PDR of node B, denoted as PDRB , is estimated sim-
ilarly. The overall performance of the TSCH network is
optimized at the number of shared timeslots (NS) that max-
imizes the average PDR. Fig. 3 shows numerical results for
a scenario with asymmetrical link qualities, i.e. pA = 0.95
and pB = 0.55. The traffic rate is the same for both nodes:

Shared Slots

0 10 20 30 40 50

P
D

R

0.4

0.6

0.8

1

R=34

R=38

R=42

R=46

R=48

Figure 3: Slot sharing improves the reliability of links with
asymmetrical quality. The optimum number of shared slots de-
creases as the overall traffic increases.

R = rA = rB . The slotframe size is NF = 100 slots. The x-
axis is the number of shared slots, NS , and the y-axis is the
average PDR of A and B. Using a contention-free schedule,
i.e. NS = 0, in this asymmetrical instance is not ideal: there
are unused slots for node A, whilst there are not enough slots
for node B. On the other hand, slot sharing improves the
performance. We can also observe that the optimum number
of shared slots decreases as the traffic increases, until a
certain level where a contention-free schedule is optimal.

V. SYSTEM ARCHITECTURE

Schedule design. The following kinds of cells must
be supported: (a) cells for broadcast traffic; (b) cells for
transmission from forwarding nodes to the gateway; (c) cells
for transmissions between the forwarding nodes; (d) other
cells, e.g., for communication with leaf nodes. The schedule
is constructed as follows. At the start of the slotframe, there
is a single broadcast slot (category a). Subsequently, there
is a repeating block of slots for traffic categories b and c. In
a network with N forwarding nodes, the block consists of
N slots (Fig. 4) for transmission from each node, followed
by zero or more shared slots. Finally, a few slots at the
end of slotframe are reserved for communication with leaf
nodes (category d; not further discussed in this paper, as
that is low data rate traffic). We assume that the number of
forwarding nodes in the network is known at compile time.
In these conditions, it is possible to map the MAC address of
each node to a unique channel offset, subsequently called the
node’s channel offset. In practice, a lookup table or a hash
function can be used to perform this mapping. As long as the
number of channels used in the network is greater or equal
that the number of forwarding nodes, the communication
with different nodes takes place on different channels.

Runtime behavior. A forwarding node wakes up at the
start of every TSCH time slot. Subsequently, its actions are:
• If the slot is a broadcast slot, use channel offset 0:
• if broadcast packets are queued, send out one of them;
• otherwise, listen for packets.

time

c
h

a
n

n
e
l

o
ff

s
e
t

B GW C GW D GWA GW GW*
B A C A D A

A C B C D C
A D B D C D

A B D BC B

A GW

A C
A D

A B

...

...

...

...

Bcast0

1

2

3

4

| {z }repeating block

Figure 4: A fragment of the slotframe for networks with 4 forwarding nodes, such as in Fig. 1 and Fig. 5. GW denotes the gateway
node, A,B,C,D denote forwarding nodes. Bcast marks a timeslot reserved for broadcast. ∗ → GW denotes a shared slot, in which all
nodes directly connected to the gateway are allowed to transmit. The two green cells in the schedule mark one way how to forward a
packet from B to the gateway (GW), assuming network as in Fig. 5a.

50%

50%

100%

100%

A B

C D

GW

100%
50%

50%

200%
200%

A

GW

B C

D

50%

50%

50%

150%
GW

A

D

B

C

a)

b)

c)

150%
200% 50%100%

200%
300% B CGW A D

50%

50%

150%
200%
300%

B

C

GW
A

D

50% 50%

50%
100%

B

C

GW

A

D

Figure 5: Schedule capacity usage in different topologies
assuming worst-case data generation rate on each node and
100 % cell overallocation. (a) A topology supported naturally. (b)
A topology supported by applying the cell reuse technique. Node
A is able to use cells scheduled for C → GW for its own data
forwarding to GW in a collision-free way, since A has C as an
indirect child in its routing tables. (c) A topology not supported
assuming the worst-case data rate.

• Otherwise, if the slot has a cell that denotes communica-
tion with a leaf node, perform the required transmission
with the scheduled channel offset.

• Otherwise, if the slot contains cells where the node
is marked as sender: select a neighbor node that has
nonempty packet queue, if such any exists. Use the
selected neighbor node’s channel offset to transmit a
packet from the neighbor’s queue.

• Otherwise, if the slot is a shared Tx slot and the node
is directly connected to the gateway, randomly choose
whether to transmit a packet or sleep, with probability
depending on the number of packets in queue.

• Otherwise, listen for packets using node’s channel offset.

The algorithm is similar on the gateway node, except that:
(1) the GW node always listens during shared slots and (2) it
reuses network’s broadcast slots to transmit unicast packets.

Contention. Since the quality of real-world wireless links
varies significantly, unpredictably, and rapidly, significant
slot overallocation is required to account for retransmissions.
Under normal channel conditions the overallocated slots

remain idle. Wireless link studies [2] [3] [4] show that
even though wireless link quality is occasionally correlated
(e.g., because of regional external interference), some spatial
diversity is always present as well. Given this spatial diver-
sity assumption, we can conclude that it is very unlikely
that all links are going to suffer from bad performance
at the same time. Therefore the overallocation factor can
be reduced by introducing shared slots. To minimize the
number of collisions in these shared slots, only nodes with
bad quality links or excessive data to forward should make
use of those links. It’s easy to see that if contention points
in the network exist at all, the gateway node is always one
of them, as it receives more data than any of the other
nodes. Therefore in our scheme the shared slots are reserved
for transmissions specifically to the gateway node. In a
shared slot, the probability that a node transmits a packet
is selected randomly, as a function of that node’s queue size
q: PTx ≡ f(q). We found that both linear dependency and
squared dependency show good results. Further in the paper,
f is selected to be square of the queue size: f(q) = q2

S ,
where S is the number of shared slots per slotframe.

Multihop. Additional overallocation is required because
of multihop topologies. If the maximal data rate of a single
node is K, then the maximal cumulative data rate of a
node forwarding data from N children is N × (K + 1).
Consequently, static scheduling in multihop topologies with
this method either requires massive overallocation for the
worst-case number of children, or leads to some topologies
where the schedule cannot satisfy PDR requirements because
of contention. To increase the throughput, we implement slot
reuse on the forwarding node, where slots “belonging” to
its indirect children are appropriated by the node for traffic
forwarding upstream. For example, assuming line topology
as in 5b, the node A is free to reuse cells scheduled for
C → GW and D → GW to send its data to the gateway,
while node B can use the cell D → A to send packets to
A. Note that A is not able to use cells B → GW , because
during that timeslot A is already busy with listening for
packets coming from B.

Ensuring fairness. In a transmission slot, a node can
select any of its neighbors with nonempty packet queue as
the receiver. It is clear that always preferring neighbors in the

Mean(PRR)

0.5 0.6 0.7 0.8 0.9 1

S
td

(P
R

R
)

0

0.05

0.1

0.15

0.2

0.25

0.3

No shared slots

8 shared slots

16 shared slots

Mean(PRR)

0.5 0.6 0.7 0.8 0.9 1

P
D

R

0.85

0.9

0.95

1

No shared slots

8 shared slots

16 shared slots

Figure 6: Scatter plots showing the schedule with the best performance for 1000 simulation experiments with randomly-selected
link qualities for each link. Each scenario is simulated with a contention-free schedule (no shared slots) and with two hybrid schedules
(8 shared slots and 16 shared slots) and the best configuration is plotted. The optimum number of shared slots increases as the average
link quality increases, but also as the standard deviation of the quality of the links of the TSCH network increases.

same order can lead to starvation of the less-prioritized ones,
i.e., situations where the packets in the neighbors’ queues are
not sent out before they timeout. We perform the selection in
a round robin fashion, using the current timeslot as the input.
Let us denote with N the number of nodes and with node id
the local node’s channel offset. This algorithm prioritizes all
neighbors equally as long as the slotframe length and N are
co-prime numbers:

for i = 0; i < N ; i = i+ 1 do
neighbor id← (i+ timeslot) mod N
if neighbor id 6= node id then . Not the local node

if packet queue[neighbor id] 6= ∅ then . Has packets
return packet queue[neighbor id].pop()

end if
end if

end for
return NULL

VI. EXPERIMENTAL SETUP AND RESULTS

A. Numerical simulations

In this section, we use numerical simulations to validate
the analytic observations of Section IV and evaluate the
benefits of TSCH slot sharing in multiple diverse scenarios
that are likely to be encountered in real-life deployments,
such as the SPHERE 100-home deployment. To this end, we
have implemented a discrete-time Python simulator1, which
can simulate different TSCH networks and estimate the
average PDR under various schedules. Using this simulator,
we compare our solution against a contention-free schedule.

More specifically, a single-hop TSCH network is simu-
lated as follows. When a contention-free schedule is se-
lected, the available slots are divided equally to all the

1Available in https://github.com/irc-sphere/tsch-simulator.

end nodes. When a hybrid schedule with shared slots is
simulated, the number of shared slots are reserved, whilst
the remaining slots are divided equally amongst the end
nodes. Each node forwards its traffic primarily through its
dedicated slots, using the shared slots for excess traffic.
In the simulations that follow we assume that packets are
dropped after a maximum of 8 transmissions. In addition,
we assume a queue size of 8 packets. Moreover, we assume
a slotframe size of 99 slots. We reserve 19 of these slots
for broadcasting and other traffic. The remaining 80 of the
these slots are used by 4 end nodes that form a star network,
similar to Fig. 1. Each simulation estimates the average PDR
of the 4 end nodes for a period of 600 seconds.

In the first series of simulations, we compare three sched-
ules: (i) 0 shared slots, (ii) 8 shared slots, and (iii) 16
shared slots. We simulate 1000 instances of the topology,
considering that each end node forwards 14 packets per
slotframe. In each instance, the quality of the links is
randomly selected in [0.5-1.0]. For each configuration, the
PDR of each of the thee schedules is estimated separately,
and the best schedule is plotted in the scatter plots in Fig. 6.
In Fig. 6a, the x-axis is the average PRR of the links and the
y-axis corresponds to their standard deviation. In Fig. 6b,
the x-axis is the average PRR of the links and the y-axis
corresponds to the resulting average PDR.

The results demonstrate that slot sharing is beneficial in
many scenarios. Moreover, the simulations verify the key
observation of Section IV. Indeed, as the average quality
of the links decreases and the overall traffic increases due
to retransmissions, the best performance is achieved with
a smaller number of shared slots. In particular, when the
average PRR is less than 0.7, the contention-free sched-
ule yields the optimum performance. Similarly, the hybrid
schedule with 8 shared slots dominates in networks with an
average PRR of 0.7 − 0.8; and the hybrid schedule with

https://github.com/irc-sphere/tsch-simulator

of Shared Slots

0 5 10 15 20

P
D

R
0.9999

0.999

0.99

0.9

0

9 ppf

10 ppf

11 ppf

12 ppf

13 ppf

14 ppf

Figure 7: Slot sharing improves the reliability of a TSCH
network on average. The optimal number of shared slots (marked
by the × symbol) depends on the packet generation rate (packets
per frame, ppf) per node. Each point shows the average PDR of
1000 simulation experiments with random link qualities in [0.5, 1].

16 shared slots yields the best performance for networks
with an average PRR of more than 0.8. In TSCH networks
with exceptionally good (i.e. very high average PRR) and
homogeneous links (i.e low standard deviation of PRR), all
three schedules yield a perfect performance (100% PDR).

In the next series of simulations (Fig. 7), the goal is to
identify the optimal number of shared slots in the average
case scenario. We assume a constant datarate per end node
and compare schedules with a different number of shared
slots. For each data point, we report the average PDR over
1000 scenarios with random link qualities (the PRR of each
link is selected uniformly in [0.5, 1]). In situations where
the traffic is close to the TSCH capacity, sharing time slots
outperforms a contention-free schedule on average. Never-
theless, the optimum number of shared timeslots decreases
as the overall traffic increases.

B. Full-scale implementation and simulation

Implementation and simulation setup. We implement
the scheduling algorithms (Section V) on top of Contiki, an
embedded operating system for the Internet of Things. Con-
tiki features a standard-compatible TSCH implementation
[7]. In particular, we add functionality to: (1) dynamically
select the channel offset to use for transmissions depending
on the target node address, and (2) to support shared
slots, used opportunistically with transmission probability
depending on queue size. The code is platform-independent
and can be run on all platforms on which TSCH is supported.

To evaluate the implementation, we use hardware-
emulated Zolertia Z1 nodes (msp430 MCU running @ 8
MHz, CC2420 radio). The TSCH slot duration is set to 30 ms
(due to a slower MCU than our CC2650 target platform);
other settings are the same as for the numerical simulations.

Results: the star network. We run Cooja simulations
for 30 min, generating 120 bytes packets uniformly with

0.3 0.4 0.5 0.6 0.7
PRR on the worst link

0.90

0.92

0.94

0.96

0.98

1.00

T
o
ta

l
P
D

R

0 shared slots, numerical

8 shared slots, numerical

16 shared slots, numerical

0 shared slots, Cooja

8 shared slots, Cooja

16 shared slots, Cooja
0.60

0.68

0.76

0.84

0.92

1.00

P
D

R
 o

n
 t

h
e
 w

o
rs

t
lin

k

Figure 8: Comparative results for numerical simulations and
full-scale simulations in Cooja that demonstrate the benefits of
hybrid schedules. The link quality is PRR = 0.9 on all links,
except for the weakest link (given on the x axis).

rate 10 ppf. In a star network, the results (Fig. 8) show a
close match between numerical simulation results and Cooja
results (< 0.6 percent point difference in PDR). The results
clearly show that the shared slot approach is beneficial as
long as link diversity is present. In particular, when the
weakest link has PRR = 0.3, the improvement in packet
error rate is 3.5 times in Cooja (9.62 vs. 2.75 % PER) and
4.0 times in the numerical simulations (9.99 vs. 2.47 % PER)
when comparing between the 0 shared slot and 16 shared slot
configurations. The shared slot approach not only improves
the overall PDR, but also makes data delivery more fair. All
lost packets in this setup are lost on the weakest link; as a
result, the shared schedule helps to avoid situations when
the data from one node is significantly underrepresented in
the experiment’s final data set – a situation undesirable for
many real-world applications.

Results: multihop networks. We use Cooja to simulate
a number of multihop networks with five nodes. In total
we simulate five different topologies: two belonging to the
class (a) in Figure 5, and three belonging to the class (b) in
Figure 5 — i.e., two for which the forwarding data rate is
on the average below or equal to the schedule capacity and
three where the capacity is overtaxed on one or more links.

The results (Fig. 9) compare four different configuration
settings: default TSCH implementation, using the shared
slots technique, using slot appropriation, and combining the
two techniques. The results show that all of the techniques
significantly increase the average PDR. However, when oper-
ating at the maximal theoretical capacity (left side of Fig. 9)
none of the techniques are capable of achieving > 80%
PDR for the least reliable of nodes. This can be explained
by the fact that TSCH queue sizes are not infinite. With
constant data rate and random packet loss, some burstiness
of retransmissions is expected to be present. Whenever
such a burst overflows the queue, packets are lost. This
behavior is exacerbated by multihop, where bursty losses

Bas
el
in

e

Sh
ar

ed

Rea
pp

ro
p.

Bot
h

Method

0.0

0.2

0.4

0.6

0.8

1.0

P
D

R

(a) ppf = 8

Bas
el
in

e

Sh
ar

ed

Rea
pp

ro
p.

Bot
h

Method

0.0

0.2

0.4

0.6

0.8

1.0

P
D

R

(b) ppf = 6

Figure 9: Slot reappropriation demonstrates better perfor-
mance in multihop networks. The figure compares baseline
TSCH with the shared slot approach, slot reappropriation, and a
combination of the two techniques. PRR = 0.8 on all links. Left-
hand side shows results from a fully saturated schedule, right-hand
side: results from a schedule with 25 % overallocation for expected
traffic rate. Boxplots from the PDR results of individual nodes; red
lines show the median results.

are more likely to be present on forwarding nodes. The
Contiki implementation is vulnerable as it uses a relatively
small queue size of 8 packets; this number is bounded by
the strictly limited RAM size on sensor nodes.

Over-allocating the schedule by 25 % compared to the
average-case data rate leads to better results (left side of
Fig. 9). In particular, the slot reappropriation technique
achieves 98.1 % average PDR and 95.5 % worst-case PDR
(for an individual node). The results also show that com-
bining reappropriation and slot sharing techniques gives no
additional benefits and has detrimental effect on the worst-
case performance because of collisions.

In sum, the reappropriation technique is better for multi-
hop networks even when the number of nodes is small. The
slot sharing technique is recommended only if the maximal
number of hops cannot be larger than two.

VII. CONCLUSION

Driven by a real-world deployment in 100 residential
environments, in this paper we are dealing with the prob-
lem of scheduling high rate unpredictable traffic in IEEE
802.15.4 TSCH networks that operate close to their maxi-
mum capacity. Focusing on dynamic environments where re-
active scheduling is impractical, we propose an autonomous
scheduling methodology which combines: (i) a mixture of
dedicated contention-free slots and shared contention-based
slots, and (ii) an algorithm that in multihop topologies
reappropriates scheduled slots to a different node. We im-
plement our scheduling methodology for the Contiki OS and
evaluate it using both numerical and Cooja simulations. The
results show that in unpredictable environments the proposed
techniques outperform a schedule with dedicated-only slots,
improving the average reliability of the TSCH network.

ACKNOWLEDGMENTS

This work was performed under the SPHERE IRC funded
by the UK Engineering and Physical Sciences Research
Council (EPSRC), Grant EP/K031910/1.

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks—
Part 15.4,” IEEE Std 802.15.42015, 2015.

[2] T. Zhu, Z. Zhong, T. He, and Z.-L. Zhang, “Exploring link
correlation for efficient flooding in wireless sensor networks,”
in NSDI, vol. 10, 2010, pp. 1–15.

[3] L. Tang, K.-C. Wang, Y. Huang, and F. Gu, “Channel char-
acterization and link quality assessment of IEEE 802.15.4-
compliant radio for factory environments,” IEEE Transactions
on Industrial Informatics, vol. 3, no. 2, pp. 99–110, 2007.

[4] A. Elsts, H. Wennerström, and C. Rohner, “IEEE 802.15.4
Channel Diversity in an Outdoor Environment,” in ACM
RealWSN, 2015.

[5] “IPv6 over the TSCH mode of IEEE 802.15.4e IETF working
group,” https://tools.ietf.org/wg/6tisch/.

[6] “Minimal 6TiSCH Configuration,” https://tools.ietf.org/html/
draft-ietf-6tisch-minimal.

[7] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne,
“Orchestra: Robust Mesh Networks Through Autonomously
Scheduled TSCH,” in ACM SenSys, 2015, pp. 337–350.

[8] I. Juc, O. Alphand, R. Guizzetti, M. Favre, and A. Duda,
“Energy Consumption and Performance of IEEE 802.15.4e
TSCH and DSME,” in IEEE Wireless Commun. and Network-
ing Conf. (WCNC), 2016.

[9] A. Elsts, S. Duquennoy, X. Fafoutis, G. Oikonomou,
R. Piechocki, and I. Craddock, “Microsecond-Accuracy Time
Synchronization Using the IEEE 802.15.4 TSCH Protocol,”
in IEEE SenseApp, 2016.

[10] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco,
and G. Boggia, “Traffic aware scheduling algorithm for
reliable low-power multi-hop ieee 802.15.4e networks,” in
IEEE PIMRC, 2012, pp. 327–332.

[11] M. R. Palattella, N. Accettura, L. A. Grieco, G. Bog-
gia, M. Dohler, and T. Engel, “On optimal scheduling in
duty-cycled industrial iot applications using IEEE802.15.4e
TSCH,” IEEE Sensors J., vol. 13, no. 10, pp. 3655–66, 2013.

[12] A. Tinka, T. Watteyne, and K. Pister, “A decentralized
scheduling algorithm for time synchronized channel hop-
ping,” in Int. Conf. Ad Hoc Networks, 2010, pp. 201–216.

[13] M. Hashimoto, N. Wakamiya, M. Murata, Y. Kawamoto, and
K. Fukui, “End-to-end reliability-and delay-aware scheduling
with slot sharing for wireless sensor networks,” in 8th Int.
Conf. Commun. Syst. and Networks (COMSNETS), 2016.

[14] P. Woznowski et al., “SPHERE: A Sensor Platform for
Healthcare in a Residential Environment,” in Designing, De-
veloping, and Facilitating Smart Cities: Urban Design to IoT
Solutions. Springer, 2017, pp. 315–333.

[15] X. Fafoutis et al., “SPW-1: A Low-Maintenance Wearable
Activity Tracker for Residential Monitoring and Healthcare
Applications,” in Int. Summit on eHealth (eHealth 360), 2016,
pp. 294–305.

[16] N. Twomey, S. Faul, and W. P. Marnane, “Comparison
of accelerometer-based energy expenditure estimation algo-
rithms,” in 4th Int. Conf. Pervasive Computing Technologies
for Healthcare. IEEE, 2010, pp. 1–8.

[17] A. Elsts, X. Fafoutis, R. Piechocki, and I. Craddock, “Adap-
tive Channel Selection in IEEE 802.15.4 TSCH Networks,”
in 1st Global Internet of Things Summit (GIoTS), 2017.

https://tools.ietf.org/wg/6tisch/
https://tools.ietf.org/html/draft-ietf-6tisch-minimal
https://tools.ietf.org/html/draft-ietf-6tisch-minimal

	Introduction
	Background and related work
	The SPHERE Use Case
	System model
	System architecture
	Experimental setup and results
	Numerical simulations
	Full-scale implementation and simulation

	Conclusion
	References

