
A User-Centric Approach to Wireless Sensor Network Programming Languages

Atis Elsts and Leo Selavo
Institute of Electronics and Computer Science

Riga, Latvia
{atis.elsts,leo.selavo}@edi.lv

Abstract—Wireless sensor networks is likely to remain a
niche technology until an easy-to-use programming interface
for a broad range of users is offered. In this paper we
sketch SEAL, a domain-specific language for WSN application
description. The target audience of our work is domain
experts with limited programming skills. We believe this user
group previously has not received enough attention from WSN
programming language designers.

Keywords-programming languages, sensor networks

I. INTRODUCTION

Wireless sensor networks (WSN) is a technology that
was envisioned as a tool for a broad range of applications
and target audiences. This vision has yet to become reality,
partially because programming WSN is so difficult.

Consider a specific example: in 2011 our WSN group at
the University of Latvia did a small pilot deployment for a
precision agriculture application [1]. Once the network was
deployed, we discovered that agriculture scientists would
like to configure and control it on their own. Unfortunately,
at the moment that was not possible, since they had no C
programming knowledge. We believe similar situations are
encountered frequently, and therefore require a solution.

People who are interested in WSN as a tool include
biologists, geologists, agriculture and other scientists, and
simply tech-savvy enthusiastic amateurs. These users and
potential users are characterized by:

• limited skills in programming and algorithm design;
• no experience with model-driven development (MDD),

UML and similar software engineering (SE) tools;
• very limited knowledge of electronics.

On the other hand, they are often technically literate and
interested in tweaking various parameters of the WSN. They
could function as maintainers of the network, if only the
right tools were given to them.

As an analogy, three user groups for a PC operating
system such as UNIX can be identified with respect to their
technical skills:

• system programmers, who write code for the OS and
programs running directly on top of it;

• everyday users, who treat the OS merely as their
working environment;

• power users and administrators, who modify configura-
tion files, use advanced control tools, and occasionally
write simple scripts.

So far WSN community has largely ignored the existence
of this third group of potential WSN users – ones that are
in-between the everyday users who view WSN merely as a
transparent data source, and WSN programming profession-
als who have designed and deployed the network. The right
kind of software abstractions for this emerging third group
of WSN users is a niche that still remains to be filled.

This position paper is organized as follows: in section II
we sketch the offered solution, while section III addressed
selected points of criticism to our approach.

II. THE LANGUAGE

SEAL was designed with the above-described third group
of user in mind. Its syntax features three kinds of descriptive
statements (for sensors, actuators and system outputs), con-
ditional statements, and syntax for describing state variables.
A few SEAL application examples follows.

Listing 1 Blink: toggles a LED every second
use RedLed, period 1000ms;

Listing 2 Sense-and-send: read light & humidity sensor
values and send to radio
read Light, period 2s;
read Humidity, period 6s;
output Radio;

Listing 3 Event detection with hysteresis: detect a critical
temperature range
state temperatureCritical false;
when Sensors.Temperature > 50C:

set temperatureCritical true;
when Sensors.Temperature < 40C:

set temperatureCritical false;
when temperatureCritical: // blink red LED

use RedLed, period 100ms;

SEAL compiler functions by translating SEAL code to
C code, which is then compiled natively for a specific
architecture. SEAL features an integrated development en-
vironment (IDE) that can be used either to write SEAL
code or or generate it by using GUI. The IDE includes
easy-to-access application examples. At the moment SEAL
is in experimental stage, with the compiler being partially
implemented.



III. ANALYSIS

Objection: similar solutions already exist. Response: sev-
eral high-level WSN programming languages and techniques
have been proposed [2], too numerous to name them all
here. When comparing them to SEAL, we can see that
solutions such as TinyDB allow to view whole sensor
network as relational database, but lack any node-centric
programming options, which are useful in the real world.
Solutions such as Regiment and Snlog use concepts from
functional programming and Prolog repectively, which might
be hard to grasp for people without strong background in
computing. Solutions such as Kairos and Pleiades extend
programming langagues (Python and C respectively) for
WSN purposes, thus giving embrass de richess for novice
programmers. None of these have declared ease-to-use for
computer science (CS) non-professionals as their primary
design goal. Perhaps [3] is the most similar work to ours, but
the authors did not mention specific practical applications as
their motive, and at the same time are more restrictive in the
class of applications they claim to support (e.g. no hetero-
geneous networks). makeSense [4] is a newer development
similar to ours, but their target audience differs: it is users
familiar with business process modelling languages.

Objection: WSN are inherently complex and their pro-
gramming and maintenance should be left to CS profession-
als. Response: so far this has been the taciturn view in WSN
community, but we believe it was caused by lack of software
abstractions accessible to a broader audience.

WSN programming can be separated in two parts: the
more and the less complex. For example, it’s easy to describe
application logic for sense-and-send or event detection, as
well as basic data processing (local data aggregation & fil-
tering), while it’s complex to describe distributed algorithms
such as multihop routing. SEAL limits itself to the former
and lets the OS and middleware handle the latter.

Objection: SEAL departs from best existing SE practices
such as MDD. Response: the target audience is unaware of
MDD, unwilling to learn UML, and is likely to find either
writing small code snippets or generating them by button
clicking more intuitive.

Objection: SEAL is OS-dependent, since the C code has
to rely on a WSN OS for common functionality. Response:
true, but its easily portable. As proof-of-concept we support
code generation for two WSN OS: MansOS [5] and Contiki.

Objection: using SEAL is not as efficient as manually
writing C or NesC code. Response: while automatically
generated code can never be better than the best code
written by hand, we note that the C code generated by
SEAL compiler uses event-based control flow, and supports
small duty-cycles. The sample applications (Blink, Sense-
and-send, and Event detection) presented here have 0.037%,
0.627%, and 0.701% duty cycles respectively (estimated on
Tmote Sky at 4MHz, without MAC protocol). As for binary

code sizes, they are 1360 bytes for Blink and 7628 for Sense
& send (evaluated on MansOS).

Objection: the solution is too restrictive, too application-
specific. Response: while SEAL is developed with a few
specific applications in mind, it’s suitable for many use
cases. As [3] shows, this class of application is prevalent
in WSN deployments. Besides, SEAL is not a complete and
integrated WSN framework and therefore is easily adaptable
to other classes of applications.

Objection: SEAL does not provide a complete framework
for WSN programming. Response: The objective of SEAL
is to be one of blocks in a building-block approach to
WSN programming. Together with SEAL IDE and MansOS,
SEAL is a complete SE solution for WSN. The application
logic is implemented in SEAL; MansOS itself functions
as the run-time layer; and MansOS management protocol
functions as the macroprogamming layer, utilizing the built-
in support for run-time reprogramming.

We believe that a monolithic integrated solution is a
bad idea, because it leads to reduced flexibility, therefore
integration should be delayed as late as possible. A heavily
integrated solution is difficult to maintain and update as well.
Case in point is TinyDB: despite its popularity for TinyOS
1, there still is no TinyDB for TinyOS 2.x.

IV. CONCLUSION

We have identified a new, emerging class of WSN users
and speculated on the kind of software they are going to
require. We have outlined the main features of our scripting
language and argued that it allows these users to create
efficient WSN programs for a broad class of typical WSN
applications.

ACKNOWLEDGMENT

This work was supported by European Social Fund grant
Nr. 2009/0219/1DP/1.1.1.2.0/APIA/VIAA/020.

REFERENCES

[1] A. Elsts, R. Balass, J. Judvaitis, R. Zviedris, G. Strazdins,
A. Mednis, and L. Selavo, “Sadmote: A robust and cost-
effective device for environmental monitoring,” vol. 7179, pp.
225–237, 2012.

[2] L. Mottola and G. P. Picco, “Programming wireless sensor
networks: Fundamental concepts and state of the art,” ACM
Comput. Surv., vol. 43, no. 3, pp. 19:1–19:51, Apr. 2011.

[3] L. Bai, R. Dick, and P. Dinda, “Archetype-based design: Sensor
network programming for application experts, not just pro-
gramming experts,” in Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks.
IEEE Computer Society, 2009, pp. 85–96.

[4] “makeSense Project,” http://www.project-makesense.eu.

[5] G. Strazdins, A. Elsts, and L. Selavo, “MansOS: Easy to
Use, Portable and Resource Efficient Operating System for
Networked Embedded Devices,” in Proc. SenSys’10, 2010.


