
Demo Abstract: ProFuN TG: A Tool Using
Abstract Task Graphs to Facilitate the Development,

Deployment and Maintenance of Wireless Sensor
Network Applications

Atis Elsts, Farshid Hassani Bijarbooneh, Martin Jacobsson, and Konstantinos Sagonas
Uppsala University, Sweden

Abstract—In this demo abstract we present ProFuN TG (Task
Graph), a tool for sensor network application development using
the data-flow programming paradigm. The tool has support for
the whole lifecycle of WSN application: from the initial design
of its task graph, task placement on network nodes, execution
in a simulated environment, deployment on real hardware, to
its automated maintenance through task remapping. ProFuN TG
allows to program applications that incorporate quality-of-service
requirements, expressed through constraints on task-to-task data
flows.

I. INTRODUCTION

Programming wireless sensor network applications is diffi-
cult, especially if certain reliability and data quality properties
are desired together with energy efficiency.

We take an existing WSN programming methodology, the
Abstract Task Graph [1], and implement it in ProFuN Task
Graph 1 , a tool that facilitates the development of such appli-
cations. ProFuN TG not only allows the user to describe the
functionality of an application with a task graph, but also to
incorporate non-functional requirements [2] in that description.
The requirements are expressed in form of probabilistic con-
straints on minimal packet delivery rate (PDR) and delivery
delay, and set on data flows between tasks. The tool allows
users both to use predefined tasks from a palette and to write
their own tasks in C or SEAL programming languages.

The tool includes support for mapping these task graphs
on network nodes, for macrocompilation of their code, and
for their deployment both in simulated and real networks.
The supporting run-time middleware gathers application per-
formance statistics and determines whether the conditions of
the constraints hold, enabling maintenance alert notifications,
as well as automated maintenance through task remapping.

II. ARCHITECTURE

Under the hood, ProFuN TG uses a number of well-known
software tools and libraries: Contiki for system-level func-
tionality, Cooja for network simulation, Gecode for constraint
solving (used in the task allocation algorithm). For the visual
frontend, an adapted version of Node-RED is employed.

ProFuN TG joins these components in a distributed mi-
croservice architecture (Fig. 1). The components communicate

1http://parapluu.github.io/profun/

executes

models task mapping

NodeJS server (JS)

•Permanent storage
•Library of examples

NodeRED

Faulty data detector
• Outlier detection
 algorithms

Third-party tools

Frontend (JS)

•User interface (web)

NodeRED

Task allocator (C++)
•Objective function
 optimization
•Path QoS prediction

Gecode

Gateway (Python)
• Serial comm. with
 the gateway node
• Web comm. with:
 • frontend
 • backend server
 • third-party tools

Database / cloud
• Data storage
 and retrieval

Simulator (Java)

•Radio simulation
•Node emulation

MSPsim

Middleware (C)
•Task management
•Comm. primitives
•QoS diagnostics

Contiki

Data visualisation
• Graphing interface

models

net status,
constraints

measurements

network

model

net status,

dynam
ic

constraints

dynamic

constraints

models
compiled
firmware

estim
ated

radio links

task

graph

measu-

rements

Fig. 1: Architectural overview

by passing JSON messages through HTTP, with the exception
of WSN middleware, which uses an efficient binary format.

The tool provides an HTTP interface for data export in
JSON format. Through it, custom or third-party tools can
access the data, provide feedback for ProFuN TG , and impose
dynamic constraints on the task mapping algorithm. In our
demo setup we are going to use a custom principal component
analysis (PCA) tool that detects sensor faults by learning
acceptable sensor covariance bounds from past datasets.

ProFuN TG task sheet view (Fig. 2a) shows the task graph
of a sample application. Network view (Fig. 2b) shows node
placement in the network and tasks mapped on the nodes.

III. APPLICATION EXAMPLE

To explain the typical user workflow with the tool, let us
take an example application that uses temperature sensors and

http://parapluu.github.io/profun/

(a) Task graph view. Shows sensor, actuator, and processing tasks con-
nected with data flows. On some of flows, PDR constraints are configured

(b) Network view. Shows sensing and actuating nodes (as blue and
red circles, respectively) connected with network links (grey lines), and
mapped tasks (rectangles) connected with data flows (black arrows)

Fig. 2: The visual interface of ProFuN TG showing a heater control application with fire detection

heater actuators to a maintain stable temperature in a number
of rooms. The tool allows the user to:
• Create a task graph model for the application. The model

consists of two tasks connected with a data flow.
• Set a constraint for minimally required PDR on the flow.
• Describe the model of the network: node locations, capabili-

ties, and links between nodes. Probabilistic parameters such
as link delay are described by probability distributions. In
absence of explicit configuration, link existence and quality
parameters are estimated by the simulator.

• Partition the network into regions (rooms) and configure
task allocation frequency: one-pair-per-room.

Subsequently, the tool:
• Maps the tasks on network nodes, taking into account the

network model, with the objective to minimize energy usage
and satisfy the PDR constraints.

• If desired, simulates the setup to see if the constraints hold
in the simulation environment.

• Deploys the task graph on a real WSN.
• Continuously tests for satisfaction of the constraints and

requests task remapping when the test fails.

IV. DEMO SETUP

We plan to demonstrate a fault-tolerant light-sensing appli-
cation developed with the tool.

The setup is going to consist of a laptop and a number
of sensor nodes equipped with light sensors. On the laptop,
ProFuN TG will be running, and the measured light intensity
will be displayed. Light sensing and data collection tasks will
be activated on the nodes.

Interested attendees are going to be invited to try to “break”
the application by covering some of the light sensors and
turning off some of the nodes, while the system is expected

to demonstrate robustness by ignoring readings of the affected
sensors and reallocating tasks to a different set of nodes.

V. CONCLUDING REMARKS

ProFuN TG enables design of data quality requirement-
aware task graph applications by allowing the user to write
PDR and delay constraints on data flows between tasks.
The tool also enables deployment and maintenance of these
applications by providing middleware that checks for faults at
runtime and triggers reallocation in case a violation is detected.

A major difficulty for the tool to provide quality-of-service
guarantees is caused by the fact that the inherent unreliability
of wireless communications makes it hard to predict the
performance of an application before actually deploying it.
To make the runtime system more predictable, advanced link-
layer protocols such as Glossy [3] should be used instead of
the current Contiki network stack.

ACKNOWLEDGMENTS

The authors acknowledge support from SSF, the Swedish
Foundation for Strategic Research.

REFERENCES

[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract
task graph: a methodology for architecture-independent programming of
networked sensor systems,” in Proceedings of the 2005 workshop on End-
to-end, sense-and-respond systems, applications and services. USENIX
Association, 2005, pp. 19–24.

[2] F. H. Bijarbooneh, A. Pathak, J. Pearson, V. Issarny, and B. Jonsson, “A
constraint programming approach for managing end-to-end requirements
in sensor network macroprogramming.” in SENSORNETS, 2014, pp. 28–
40.

[3] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Information Process-
ing in Sensor Networks (IPSN), 2011 10th International Conference on.
IEEE, 2011, pp. 73–84.

	Introduction
	Architecture
	Application example
	Demo setup
	Concluding remarks
	References

