Motivation & overview

Goal: to ease sensor network programming in the large

- Design:
 - **Macroprogramming** the network with **Abstract Task Graph (AtAG)**
 - Tool-assisted **network** model specification
 - Automated **mapping** of tasks to network nodes

- Deployment:
 - Multiple firmware **configurations**
 - Over-the-air **task setup**

- Maintenance:
 - **Express reliability requirements** as part of the model
 - **Runtime assurance**: check the satisfaction of these requirements
 - Automatically **reallocate** tasks on failure

Features

- **Network** layout and sensor node property description
- **Task** definition and wiring
 - A task is an arbitrary node-local chunk of application functionality with a fixed interface
 - Nonfunctional **requirement** specification
 - Constraints on min PDR, max delay, etc. (pictured)
 - Integration with simulator
 - Run-time support through middleware

Architecture

- **Main components:**
 - Web interface
 - Task allocator daemon
 - Gateway daemon
 - Interface with a network simulator
 - Sensor net middleware library

- **Distributed microservice architecture**
- **Communication**: JSON over HTTP

Technical highlights

- **Builds on existing tools**
 - WSN software (e.g. Contiki and Cooja)
 - Gecode: for constraint solving in the task mapping algorithm
 - Node-RED: for UI look-and-feel

- Experimental **Glossy-based scheduler** for the control plane
- **Contiki extended** with:
 - Reliable mesh protocol
 - Glossy / ContikiMAC timesharing
 - JSON-over-HTTP interface to Cooja

- **Probabilistic variables** (e.g. link qualities) represented by probability distributions
- Automatically sets up extra tasks on redundant network nodes in case reliability requirements without them cannot be satisfied

Evaluation

- **Task allocation performance** with instances from [Pathak 2010]
 - (objective function: minimize average energy consumption)

- **Task setup performance** in 2x2, 4x4, 6x6, and 8x8 node grid networks