PREPRINT. In Proc. Workshop on Algorithms and Data Structures, pages 60-71. Springer Verlag, 1993.

Balanced Search Trees Made Simple

Arne Andersson*

Department of Computer Science, Lund University, Box 118, S-221 00 Lund, Sweden

Abstract. As a contribution to the recent debate on simple implementa-
tions of dictionaries, we present new maintenance algorithms for balanced
trees. In terms of code simplicity, our algorithms compare favourably
with those for deterministic and probabilistic skip lists.

1 Introduction

It is well known that there is a huge gap between theory and practice in computer
programming. While companies producing computers or cars are anxious to use
the best technology available — at least they try to convince their customers that
they do so — the philosophy is often different in software engineering; it is enough
to produce programs that “work.” Efficient algorithms for sorting and searching,
which are taught in introductory courses, are often replaced by poor methods,
such as bubble sorting and linked lists. If your program turns out to require too
much time or space you advice your customer to buy a new, heavier and faster,
computer.

This situation strongly motivates an extensive search for simple and short-
coded solutions to common computational tasks, for instance worst-case efficient
maintenance of dictionaries. Due to its fundamental character, this problem is
one of the most well-studied in algorithm design. Until recently, all solutions
have been based on balanced search trees, such as AVL-trees [1], symmetric
binary B-trees [6] (also denoted red-black trees [8]), SBB(k)-trees [4], weight-
balanced trees [11], half-balanced trees [12], and k-neighbour trees [9]. However,
none of them has become the structure of choice among programmers as they are
all cumbersome to implement. To cite Munro, Papadakis, and Sedgewick [10],
the traditional source code for a balanced search tree “contains numerous cases
involving single and double rotations to the left and the right”.

In the recent years, the search for simpler dictionary algorithms has taken a
new, and quite successful, direction by the introduction of some “non-tree” struc-
tures. The first one, the skip list, introduced by Pugh [14] is a simple and elegant
randomized data structure. A worst-case efficient variant, the deterministic skip
list, was recently introduced by Munro, Papadakis, and Sedgewick [10].

The important feature of the deterministic skip list is its code simplicity. As
pointed out by Munro et al., the source code for insertion into a deterministic
skip list is simpler (or at least shorter) than any previously presented code for a

* Arne.Andersson@dna.lth.se

balanced search tree. In addition, the authors claimed that the code for deletion
would be simple, although it was not presented.

In this article we demonstrate that the binary B-tree, introduced by Bayer [5],
may be maintained by very simple algorithms. The simplicity is achieved from
three observations:

— The large number of cases occurring in traditional balancing methods may
be replaced by two simple operations, called Skew and Split. Making a Skew
followed by a Split at each node on the traversed path is enough to maintain
balance during updates.

— The representation of balance information as one bit per node creates a
significant amount of book-keeping. One short integer (o(loglogn) bits) in
each node makes the algorithms simpler.

— The deletion of an internal node from a binary search tree has always been
cumbersome, even without balancing. We show how to simplify the deletion
algorithm by the use of two global pointers.

As a matter of fact, the coding of our algorithms is even shorter than the
code for skip lists, both probabilistic and deterministic, are. In our opinion, it is
also simpler and clearer. Hence, the binary search tree may compete very well
with skip lists in terms of simplicity.

In Section 2 we present the new maintenance algorithms for binary B-trees,
and in Section 3 we discuss their implementation. Section 4 contains a compar-
ison between binary B-trees and deterministic skip lists. We also make a brief
comparison with the probabilistic skip list. Finally, we summarize our results in
Section 5.

2 Simple Algorithms

The binary B-tree, BB-tree, was introduced by Bayer in 1971 [5] as a binary
representation of 2-3 trees [2]. Using the terminology in [4], we say that a node
in a 2-3 tree is represented by a pseudo-node containing one or two binary nodes.
Edges inside pseudo-nodes are horizontal and edges between pseudo-nodes are
vertical. Only right-edges are allowed to be horizontal. In order to maintain
balance during updates, we have to store balance information in the nodes. One
bit, telling whether the incoming edge (or the outgoing right-edge) is horizontal
or not, would be enough. However, in our implementation we chose to store an
integer level in each node, corresponding to the vertical height of the node. Nodes
at the bottom of the tree are on level 1.

Briefly, all representations of B-trees, including binary B-trees, red black
trees, and deterministic skip lists, are maintained by two basic operations: joining
and splitting of B-tree nodes. In a binary tree representation, this is performed
by rotations and change of balance information. The reason why the algorithms
become complicated is that a pseudo-node may take many different shapes,
causing many special cases. For example, adding a new horizontal edge to a
pseudo-node of shape - or v may result in five different shapes, namely

S, S, A, N ,or Yy L These possibilities give rise to a large number
of different cases, involving more or less complicated restructuring operations.
Fortunately, there is a simple rule of thumb that can be applied to reduce
the number of cases:

Make sure that only right-edges are horizontal
before you check the size of the pseudo-node.

Using this rule, the five possible shapes in the above will reduce to two, namely
> and *\ , only the last one will require splitting.
In order to apply our rule of thumb in a simple manner, we define two basic
restructuring operations (p is a binary node):

Skew (p): Eliminate horizontal left-edges below p. This is performed by following
the right path from p, making a right rotation whenever a horizontal left-edge
is found.

Split (p): If the pseudo-node rooted at p is too large, split it by increasing the
level of every second node. This is performed by following the right path
from p, making left rotations.

These operations are simple to implement as short and elegant procedures. They
also allow a conceptually simple description of the maintenance algorithms:

Insertion

1. Add a new node at level 1.

2. Follow the path from the new node to the root. At each binary node p
perform the following:
(a) Skew (p)
(b) Split (p)

Deletion

1. Remove a node from level 1 (the problem of removing internal nodes is

discussed in Section 3).

2. Follow the path from the removed node to the root. At each binary node p
perform the following:

(a) If a pseudo-node is missing below p, i. e. if one of p’s children is two
levels below p, decrease the level of p by one. If p’s right-child belonged
to the same pseudo-node as p, we decrease the level of that node too.

(b) Skew (p)

(c) Split (p)

The algorithms are illustrated in Figures 1 and 2.

Fig. 1. Ezample of insertion into a BB-tree. The levels are separated
by horizontal lines.

Fig. 2. Ezample of deletion.

3 Simple implementation

Below, we give the complete code for declarations and maintenance of a BB-tree.

We use the well-known technique of having a sentinel [15] at the bottom of
the tree. In this way, we do not have to consider the existence of a node before
examining its level. Each time we try to find the level of a node outside the tree,
we examine the level of the sentinel, which is initialized to zero.

The declaration and initialization is straightforward. As a sentinel we use the
global variable bottom, which has to be initialized. Note that more than one tree
can share the sentinel. A pointer variable is initialized as an empty tree simply
by making it point to the sentinel.

In our implementation, we use the following code for declarations of data
types and global variables and for initialization:

type data = ...; procedure InitGlobalVariables;
Tree = Tnode; begin
node = record new (bottom);
left, right: Tree; bottomT.level := 0;
level: integer; bottomT.left := bottom,;
key: data; bottomT.right := bottom;
end; deleted := bottom;
var bottom, deleted, last: Tree; end;

The restructuring operations Skew and Split may be coded in several ways:
they may be in-line coded into the insertion and deletion procedures, or they
may be coded as separate procedures traversing a pseudo-node, making rotations
whenever needed. The code given here is a third possibility where Skew and Split
are coded as procedures operating on a single binary node. This is enough for
the restructuring required during insertion, but during deletion we need three
calls of Skew and two calls of Split. The fact that these calls are sufficient is not
hard to show, we leave the details as an exercise.

In order to handle deletion of internal nodes without a lot of code, we use
two global pointers deleted and last. These pointers are set during the top-down
traversal in the following simple manner: At each node we make a binary compar-
ison, if the key to be deleted is less than the node’s value we turn left, otherwise
we turn right (i.e. even if the searched element is present in the node we turn
right). We let last point to each internal node on the path, and we let deleted
point to each node where we turn right. When we reach the bottom of the tree,
deleted will point to the node containing the element to be deleted (if it is present
in the tree) and last will point to the node which is to be removed (which may
be the same node). Then, we just move the element from last to deleted and
remove last.

Altogether, insertion and deletion may be coded in the following way:

procedure Skew (var t: Tree);
var temp: Tree;
begin
if t].left].level = t].level then
begin { rotate right }
temp = t;
t = t7.left;
tempT.left := t].right;
t7.right := temp;
end;
end;

procedure Split (var t: Tree);
var temp: Tree;
begin
if t1.right].right].level = t].level then
begin { rotate left }
temp = t;
t := t1.right;
tempT.right := t1.left;
t1.left := temp;
t1.level := t].level + 1;
end;
end;

procedure Insert (var x: data;
var t: Tree; var ok: boolean);
begin
if t = bottom then begin
new (t);
t1.key := x;
t1.left := bottom:;
t7.right := bottom;
t1.level := 1;
ok := true;
end else begin
if x < t1.key then
Insert (x, t1.left, ok)
else if x > t1.key then
Insert (x, t1.right, ok)
else ok := false;
Skew (t);
Split (t);
end;
end;

procedure Delete (var x: data;
var t: Tree; var ok: boolean);
begin
ok := false;
if t <> bottom then begin

{ 1: Search down the tree and }
{ set pointers last and deleted. }
last := t;
if x < t].key then
Delete (x, t1.left, ok)
else begin

deleted := t;
Delete (x, t1.right, ok);
end;

{ 2: At the bottom of the tree we }

{ remove the element (if it is present). }
if (t = last) and (deleted <> bottom)
and (x = deleted].key) then
begin

deletedT key := t1.key;
deleted := bottom;
t := t1.right;
dispose (last);
ok := true;
end

{ 3: On the way back, we rebalance. }
else if (t7.left].level < t71.level-1)
or (t1.right].level < t1.level-1) then
begin

t1.level := t].level -1;
if t].right].level > t7].level then
t7.right{.level := t1.level;
Skew (t);
Skew (t1.right);
Skew (t1.right{.right);
Split (t);
Split (t71.right);
end;
end;
end;

4 Discussion

Since the BB-tree has been known for a long time, an obvious question is whether
our algorithms are actually simpler than known algorithms. A look in the original
paper by Bayer [5] or in the textbook by Wirth [15] will show that this is the
case.

First, by introducing a simple rule of thumb, we avoid all the various cases
that occur in standard algorithms. Second, if we use just one bit in each node,
we have to change the balance information in the two involved nodes after each
rotation. This is not required in our case. Third, during deletion, the difference in
level between a node and its child may become 0, 1, or 2. This is easily detected
when the levels are stored explicitly in the nodes. If we use one bit in each node,
we must use more bookkeeping, causing more (and quite tricky) code. Fourth,
we have shown how to simplify the deletion of internal nodes. combining those
observations, the implification becomes considerable.

We believe that our version of BB-trees is very suitable for classroom and
textbook presentations. Since it fills less than one page, we can provide the
student/reader with the entire code. Optimizing considerations, such as decreas-
ing the number of bits used for balance information, are nice exercises for the
interested student.

4.1 BB-trees versus deterministic skip lists

We start our comparison by examining the code for deterministic skip lists.
Then, we discuss some other aspects.

Program code: Munro et al. presented a short and elegant source code for dec-
laration, initialization, insertion, and search in a deterministic skip list. There
also exist a preliminary version of the (quite complicated and long) deletion
algorithm [13]. The code is given in C, but can easily be translated into Pas-
cal. Doing so, we find that the total code for deterministic skip lists is about
40% longer than our code for BB-trees. The length was compared using the
established method of counting lexicographical units (tokens) [7].

In addition, code for BB-trees appears to be simpler and cleaner. In our opin-
ion, the occurrence of complicated pointer expressions, like xt.dt.71.71.71.key
makes the code for deterministic skip lists harder to understand. The procedure
for insertion into a DSL also contains a “hidden GOTO-statement” in the form
of a return statement.

Recursion vs. non-recursion: A reader might argue that our comparison is
“unfair” since we compare recursive code with non-recursive. To such an objec-
tion we answer

— Recursion is no disadvantage when aiming for simple and clear code.

— It does not seem likely that a recursive version of the DSL would be simpler
than the BB-tree. At least, this remains to show.

— A stack of logarithmic size creates no problem in practice.

— The only possible drawback of recursion is that the execution time may be-
come slightly longer. However, the subject treated here is to give simple and
short algorithms, not to optimize code. If a minimal constant factor in execu-
tion time is very important, neither the binary B-tree nor the deterministic
skip list is claimed to be the ideal choice.

Reserved key values: In the suggested implementation of deterministic skip
lists two key values (maz and maz + 1) are used for special purposes. This has
some drawbacks, which becomes evident when the DSL is to be used as a general-
purpose abstract data type. If any of these keys are inserted or searched for, the
program will fail. Furthermore, for some types of data, such as real numbers,
it may be difficult to find suitable values for max and mazx + 1. Indeed, this
“minor” problem may cause a great deal of confusion and irritation.

Note that a DSL does not necessarily require these reserved keys; they may
be removed at the cost of more code.

Execution time: The purpose of this paper is not to minimize the execution
time. However, for the sake of completeness we have run some experiments.

At the moment of testing, no code for deletion in a DSL was published,
therefore we only compared the execution time for insertions and searches.

In our experiments, we used a Pascal version of the source code by Munro et
al. [10]. For binary tree search we used the (non-recursive) algorithm discussed
in [3].

The experiments were made in two environments: Sun-Pascal on a Sun
SPARCstation 1 and Turbo-Pascal 6.0 on a Victor 2/86. We used two kinds
of data: random real numbers and random strings. The strings where of type
packed array [1..20] of char and consisted of randomly chosen capitol letters
from the English alphabet. The dictionaries where of size 100 — 1000 on the PC
and 100 — 10 000 on the Sun. (Trying to insert 2000 strings in a determinis-
tic skip list, the PC run out of address space). In order to measure the cost of
inserting/searching for n elements, the following experiment was made:

1. Start the clock.

2. Repeat ten times: Make n random insertions or search all n elements.

3. Stop the clock.

4. Repeat step 1 — 3 ten times, compute average time and standard deviation.

environment |input n insertion search
BB-tree DSL |[BB-tree DSL (1) DSL (2)
Turbo Pascal| real 100 1126 1587 752 1292 983
200 1296| 1825 856 1483 1100
500 1548| 2121 949 1741 1240
1000 1724| 2368 1039 1954 1368
string| 100 1230| 1888 953 1539 1180
200 1431| 2154 1039 1784 1314
500 1719 2520 1175 2067 1471
1000 1922| 2805 1259 2257 1594
Sun Pascal | real 100 109 58 13 15 15
200 127 61 14 17 17
500 152 66 16 20 20
1000 174 70 17 21 22
2000 198 72 19 24 25
5000 221 85 23 30 30
10000 241 89 26 32 33
string| 100 126| 124 88 99 107
200 150 130 92 103 112
500 182 145 98 112 120
1000 202| 154 103 121 129
2000 224| 161 108 130 136
5000 256| 176 115 142 146
10000 282| 189 120 153 153

Table 1. A comparison of execution time (in microseconds)

The results of our experiment are given in Table 1. In all cases, the standard

deviation was less than 6%.

From the table we conclude that searches are always faster in a BB-tree. For
insertion we get varying results depending on environment. When using Turbo
Pascal, it seems to be the case that the cost of recursion used by the BB-tree
is compensated by the use of more comparisons and more calls to the memory
allocation system used by the DSL. The only time when the DSL is faster is

during insertions in the Sun Pascal environment.

We would like to point out that in many application element location is much
more common that updates. In such cases, the BB-tree would probably consume
less time than the DSL in any environment.

4.2 BB-trees versus the probabilistic skip list

So far, we have been concerned with worst-case efficient data structures. How-
ever, our binary tree implementation would also compete very well with the
original, probabilistic, skip list. A demonstration program for this data struc-
ture has been announced by its inventor on the international network for anyone
to fetch by anonymous ftp. Examining this source code, we find that the cor-
responding code for BB-trees is considerably shorter. In fact, a comparison of
the number of tokens indicates that the total code of Pugh’s program (including
declaration, initialization, insertion, deletion, destroying a list, and search) is
two to three times as long as the corresponding code for a BB-tree. The skip
list code is also more “tricky”. Of course, our comparison is not objective and
therefore we leave it to the reader to judge.

It should be noted that also the probabilistic skip list uses a reserved key
value with the same drawbacks as for the deterministic skip list.

5 Comments

The balanced binary search tree is not necessarily that complicated, although it
took more than 30 years from its introduction to find out.

Finally, we hope that the search for simple maintenance algorithms for binary
trees, skip lists, and other alternatives will help the mission of breaking the
dominance of singly-linked lists and other poor data structures.

Acknowledgements

The comments of Thomas Papadakis and Kerstin Andersson has contributed to
the presentation of this material.

References

1. G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization of
information. Dokladi Akademia Nauk SSSR, 146(2):1259-1262, 1962.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, Massachusetts, 1983. ISBN 0-201-00023-7.

3. A. Andersson. A note on searching in a binary search tree. Software-Practice and
Ezperience, 21(10):1125-1128, 1991.

4. A. Andersson, Ch. Icking, R. Klein, and Th. Ottmann. Binary search trees of
almost optimal height. Acta Informatica, 28:165-178, 1990.

5. R. Bayer. Binary B-trees for virtual memory. In Proc. ACM SIGIFIDET Work-
shop on Data Description, Access and control, pages 219-235, 1971.

10.

11.

12.

13.
14.

15.

R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290-306, 1972.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and
Models. The Benjamin/Cummings Publishing Company Inc., 1986. ISBN 0-8053-
2162-4.

L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In
Proc. 19th Ann. IEEE Symp. on Foundations of Computer Science, pages 8-21,
1978.

H. A. Maurer, Th. Ottmann, and H. W. Six. Implementing dictionaries using
binary trees of very small height. Information Processing Letters, 5(1):11-14, 1976.
J. I. Munro, Th. Papadakis, and R. Sedgewick. Deterministic skip lists. In Proc.
Symp. of Discrete Algorithms, pages 367-375, 1992.

J. Nievergelt and E. M. Reingold. Binary trees of bounded balance. SIAM Journal
on Computing, 2(1):33-43, 1973.

H. J. Olivie. A new class of balanced search trees: Half-balanced binary search
trees. R. A. I. R. O. Informatique Theoretique, 16:51-71, 1982.

Th. Papadakis. private communication.

W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In Proc. Work-
shop on Algorithms and Data Structures, WADS ’89, Ottawa, pages 437-449, 1989.
N. Wirth. Algorithms and Data Structures. Prentice-Hall, Englewood Cliffs, New
Jersey, 1986. ISBN 0-13-022005-1.

This article was processed using the IXTgX macro package with LLNCS style

